File size: 8,448 Bytes
94391f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import argparse
import gzip
import json
import multiprocessing as mp
import os
import pickle
import random
import lmdb
import numpy as np
import pandas as pd
import rdkit
import rdkit.Chem.AllChem as AllChem
import torch
import tqdm
from biopandas.mol2 import PandasMol2
from biopandas.pdb import PandasPdb
from rdkit import Chem, RDLogger
from rdkit.Chem.MolStandardize import rdMolStandardize
RDLogger.DisableLog('rdApp.*')
def gen_conformation(mol, num_conf=20, num_worker=8):
try:
mol = Chem.AddHs(mol)
AllChem.EmbedMultipleConfs(mol, numConfs=num_conf, numThreads=num_worker, pruneRmsThresh=1, maxAttempts=10000, useRandomCoords=False)
try:
AllChem.MMFFOptimizeMoleculeConfs(mol, numThreads=num_worker)
except:
pass
mol = Chem.RemoveHs(mol)
except:
print("cannot gen conf", Chem.MolToSmiles(mol))
return None
if mol.GetNumConformers() == 0:
print("cannot gen conf", Chem.MolToSmiles(mol))
return None
return mol
def convert_2Dmol_to_data(smi, num_conf=1, num_worker=5):
#to 3D
mol = Chem.MolFromSmiles(smi)
if mol is None:
return None
mol = gen_conformation(mol, num_conf, num_worker)
if mol is None:
return None
coords = [np.array(mol.GetConformer(i).GetPositions()) for i in range(mol.GetNumConformers())]
atom_types = [a.GetSymbol() for a in mol.GetAtoms()]
return {'coords': coords, 'atom_types': atom_types, 'smi': smi, 'mol': mol}
def convert_3Dmol_to_data(mol):
if mol is None:
return None
coords = [np.array(mol.GetConformer(i).GetPositions()) for i in range(mol.GetNumConformers())]
atom_types = [a.GetSymbol() for a in mol.GetAtoms()]
return {'coords': coords, 'atom_types': atom_types, 'smi': Chem.MolToSmiles(mol), 'mol': mol}
def read_pdb(path):
pdb_df = PandasPdb().read_pdb(path)
coord = pdb_df.df['ATOM'][['x_coord', 'y_coord', 'z_coord']]
atom_type = pdb_df.df['ATOM']['atom_name']
residue_name = pdb_df.df['ATOM']['chain_id'] + pdb_df.df['ATOM']['residue_number'].astype(str)
residue_type = pdb_df.df['ATOM']['residue_name']
protein = {'coord': np.array(coord),
'atom_type': list(atom_type),
'residue_name': list(residue_name),
'residue_type': list(residue_type)}
return protein
def read_sdf_gz_3d(path):
inf = gzip.open(path)
with Chem.ForwardSDMolSupplier(inf, removeHs=False, sanitize=False) as gzsuppl:
ms = [add_charges(x) for x in gzsuppl if x is not None]
ms = [rdMolStandardize.Uncharger().uncharge(Chem.RemoveHs(m)) for m in ms if m is not None]
return ms
def add_charges(m):
m.UpdatePropertyCache(strict=False)
ps = Chem.DetectChemistryProblems(m)
if not ps:
Chem.SanitizeMol(m)
return m
for p in ps:
if p.GetType()=='AtomValenceException':
at = m.GetAtomWithIdx(p.GetAtomIdx())
if at.GetAtomicNum()==7 and at.GetFormalCharge()==0 and at.GetExplicitValence()==4:
at.SetFormalCharge(1)
if at.GetAtomicNum()==6 and at.GetExplicitValence()==5:
#remove a bond
for b in at.GetBonds():
if b.GetBondType()==Chem.rdchem.BondType.DOUBLE:
b.SetBondType(Chem.rdchem.BondType.SINGLE)
break
if at.GetAtomicNum()==8 and at.GetFormalCharge()==0 and at.GetExplicitValence()==3:
at.SetFormalCharge(1)
if at.GetAtomicNum()==5 and at.GetFormalCharge()==0 and at.GetExplicitValence()==4:
at.SetFormalCharge(-1)
try:
Chem.SanitizeMol(m)
except:
return None
return m
def get_different_raid(protein, ligand, raid=6):
protein_coord = protein['coord']
ligand_coord = ligand['coord']
protein_residue_name = protein['residue_name']
pocket_residue = set()
for i in range(len(protein_coord)):
for j in range(len(ligand_coord)):
if np.linalg.norm(protein_coord[i] - ligand_coord[j]) < raid:
pocket_residue.add(protein_residue_name[i])
return pocket_residue
def read_mol2_ligand(path):
mol2_df = PandasMol2().read_mol2(path)
coord = mol2_df.df[['x', 'y', 'z']]
atom_type = mol2_df.df['atom_name']
ligand = {'coord': np.array(coord), 'atom_type': list(atom_type), 'mol': Chem.MolFromMol2File(path)}
return ligand
def read_smi_mol(path):
with open(path, 'r') as f:
mols_lines = list(f.readlines())
smis = [l.split(' ')[0] for l in mols_lines]
mols = [Chem.MolFromSmiles(m) for m in smis]
return mols
def parser(protein_path, mol_path, ligand_path, activity, pocket_index, raid=6):
protein = read_pdb(protein_path)
data_mols = read_smi_mol(mol_path)
ligand = read_mol2_ligand(ligand_path)
pocket_residue = get_different_raid(protein, ligand, raid=raid)
pocket_atom_idx = [i for i, r in enumerate(protein['residue_name']) if r in pocket_residue]
pocket_atom_type = [protein['atom_type'][i] for i in pocket_atom_idx]
pocket_coord = [protein['coord'][i] for i in pocket_atom_idx]
pocket_residue_type = [protein['residue_type'][i] for i in pocket_atom_idx]
pocket_name = protein_path.split('/')[-2]
pool = mp.Pool(32)
#mols = [convert_2Dmol_to_data(m) for m in data_mols if m is not None]
data_mols = [m for m in data_mols if m is not None]
mols = [m for m in pool.imap_unordered(convert_2Dmol_to_data, data_mols)]
mols = [m for m in mols if m is not None]
return [{'atoms': m['atom_types'],
'coordinates': m['coords'],
'smi': m['smi'],
'mol': ligand,
'pocket_name': pocket_name,
'pocket_index': pocket_index,
'activity': activity,
"pocket_atom_type": pocket_atom_type,
"pocket_coord": pocket_coord} for m in mols]
def mol_parser(ligand_smis):
pool = mp.Pool(16)
mols = [m for m in pool.imap_unordered(convert_2Dmol_to_data, tqdm.tqdm(ligand_smis))]
mols = [m for m in mols if m is not None]
return [{'atoms': m['atom_types'],
'coordinates': m['coords'],
'smi': m['smi'],
'mol': m['mol'],
'label': 1,
} for m in mols]
def pocket_parser(protein_path, ligand_path, pocket_index, pocket_name, raid=6):
protein = read_pdb(protein_path)
ligand = read_mol2_ligand(ligand_path)
pocket_residue = get_different_raid(protein, ligand, raid=raid)
pocket_atom_idx = [i for i, r in enumerate(protein['residue_name']) if r in pocket_residue]
pocket_atom_type = [protein['atom_type'][i] for i in pocket_atom_idx]
pocket_coord = [protein['coord'][i] for i in pocket_atom_idx]
pocket_residue_type = [protein['residue_type'][i] for i in pocket_atom_idx]
pocket_residue_name = [protein['residue_name'][i] for i in pocket_atom_idx]
return {'pocket': pocket_name,
'pocket_index': pocket_index,
"pocket_atoms": pocket_atom_type,
"pocket_coordinates": pocket_coord,
"pocket_residue_type": pocket_residue_type,
"pocket_residue_name": pocket_residue_name}
def write_lmdb(data, lmdb_path):
#resume
if os.path.exists(lmdb_path):
os.system(f"rm {lmdb_path}")
env = lmdb.open(lmdb_path, subdir=False, readonly=False, lock=False, readahead=False, meminit=False, map_size=1099511627776)
num = 0
with env.begin(write=True) as txn:
for d in data:
txn.put(str(num).encode('ascii'), pickle.dumps(d))
num += 1
import sys
if __name__ == '__main__':
mode = sys.argv[1]
if mode == 'mol':
lig_file = sys.argv[2]
lig_write_file = sys.argv[3]
# read the ligands smiles into a list
smis = json.load(open(lig_file))
data = []
print("number of ligands", len(set(smis)))
d_active = (mol_parser(list(set(smis))))
data.extend(d_active)
# write ligands lmdb
write_lmdb(data, lig_write_file)
elif mode == 'pocket':
prot_file = sys.argv[2]
crystal_lig_file = sys.argv[3] # must be .mol2 file
prot_write_file = sys.argv[4]
# write pocket
data = []
d = pocket_parser(prot_file, crystal_lig_file, 1, "demo")
data.append(d)
write_lmdb(data, prot_write_file)
|