File size: 20,771 Bytes
c94c8c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import random
import csv
from collections import Counter
import re

import numpy as np
import torch

from data.datasets.constant import VALID_CLASS_IDS_200

from safetensors.torch import load_file
from safetensors.torch import load
from huggingface_hub import hf_hub_download

_MEAN = (0.48145466, 0.4578275, 0.40821073)
_STD  = (0.26862954, 0.26130258, 0.27577711)
MEAN = torch.tensor(_MEAN, dtype=torch.float32).view(1, 3, 1, 1)
STD = torch.tensor(_STD, dtype=torch.float32).view(1, 3, 1, 1)
    
def normalize_images(images: torch.Tensor):
    # images: [N,3,H,W] uint8 or float
    if images.dtype == torch.uint8:
        images = images.float().div_(255.0)
    else:
        images = images.float()

    return images.sub_(MEAN).div_(STD)

def load_safetensor_from_hf(repo_id, filename, repo_type="dataset"):
    if filename.startswith('lsun'):
        filename = '/home/m50048399/transfered/ye_project/Project2/' + filename
        with open(filename, "rb") as f:
            return load(f.read())
    else:
        cached_path = hf_hub_download(
            repo_id=repo_id,
            filename=filename,
            repo_type=repo_type,
            local_files_only=True
        )
        return load_file(cached_path)

def per_scene_pad(lang_list, max_len=64, tokenizer=None, max_seq_len=50):
    """
    @param lang_list: lang json for all sentences, must include scan_id in the json element
    @param max_len: the number for padding, default is 64
    @return: a list of list, with each element in the list containing max_len number of sentences corresponding to
             one scene
    """
    scene_list = {}
    if tokenizer is not None:
        for key in ["utterance", "question", "description"]:
            if key in lang_list[0].keys():
                encoded_input = tokenizer(
                    [item[key] for item in lang_list], padding="max_length", truncation=True, max_length=max_seq_len
                )
                lang_list = [
                    {
                        k : (v, encoded_input["input_ids"][idx], encoded_input["attention_mask"][idx])
                        if k == key else v for k, v in item.items()
                    } for idx, item in enumerate(lang_list)
                ]
    for item in lang_list:
        scan_id = item["scan_id"]
        if scan_id not in scene_list.keys():
            scene_list[scan_id] = [item]
        else:
            scene_list[scan_id].append(item)
    final_list = []
    for key, value in scene_list.items():
        for index in range(0, len(value), max_len):
            if index + max_len < len(value):
                final_list.append(value[index:index + max_len])
            else:
                content = value[index:]
                sampled = random.choices(content, k=max_len)
                final_list.append(sampled)
    return final_list


def merge_tokens(token1, mask1, token2, mask2, max_len=300, tokenizer=None):
    assert len(token1) > len(token2), "not appendable"
    assert tokenizer is not None, "should pass in a tokenizer"
    len_token1 = sum(mask1) - 1  # remove the last [CLS]
    len_token2 = sum(mask2) - 1  # remove the first [BOS]
    insert_length = min(max_len - len_token1, len_token2)
    token1[len_token1: len_token1 + insert_length] = token2[1: 1 + insert_length]
    mask1[len_token1: len_token1 + insert_length] = mask2[1: 1 + insert_length]
    if token1[sum(mask1) - 1] != tokenizer.sep_token_id:
        token1[sum(mask1) - 1] = tokenizer.sep_token_id
    return token1, mask1


def convert_pc_to_box(obj_pc):
    xmin = np.min(obj_pc[:,0])
    ymin = np.min(obj_pc[:,1])
    zmin = np.min(obj_pc[:,2])
    xmax = np.max(obj_pc[:,0])
    ymax = np.max(obj_pc[:,1])
    zmax = np.max(obj_pc[:,2])
    center = [(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2]
    box_size = [xmax-xmin, ymax-ymin, zmax-zmin]
    return center, box_size


# input txt_ids, txt_masks
def random_word(tokens, tokens_mask, tokenizer, mask_ratio):
    output_label = []
    output_tokens = tokens.clone()
    for i, token in enumerate(tokens):
        if tokens_mask[i] == 0:
            output_label.append(-1)
        else:
            prob = random.random()
            # mask token with 15% probability
            if prob < mask_ratio:
                prob /= mask_ratio

                # 80% randomly change token to mask token
                if prob < 0.8:
                    output_tokens[i] = tokenizer.mask_token_id

                # 10% randomly change token to random token
                elif prob < 0.9:
                    output_tokens[i] = random.choice(list(tokenizer.vocab.items()))[1]

                # -> rest 10% randomly keep current token

                # append current token to output (we will predict these later)
                output_label.append(token.item())
            else:
                # no masking token (will be ignored by loss function later)
                output_label.append(-1)
    output_label = torch.Tensor(output_label).long()
    return output_tokens, output_label


def random_point_cloud(pcd, pcd_mask, mask_ratio):
    assert len(pcd) == len(pcd_mask)
    output_mask = []
    for i in range(len(pcd)):
        if pcd_mask[i] == 0:
            output_mask.append(0)
        else:
            prob = random.random()
            if prob < mask_ratio:
                output_mask.append(0)
            else:
                output_mask.append(1)

    output_mask = torch.tensor(output_mask, dtype=torch.bool)
    return output_mask


class LabelConverter(object):
    def __init__(self, file_path):
        self.raw_name_to_id = {}
        self.nyu40id_to_id = {}
        self.nyu40_name_to_id = {}
        self.scannet_name_to_scannet_id = {'cabinet':0, 'bed':1, 'chair':2, 'sofa':3, 'table':4,
            'door':5, 'window':6,'bookshelf':7,'picture':8, 'counter':9, 'desk':10, 'curtain':11,
            'refrigerator':12, 'shower curtain':13, 'toilet':14, 'sink':15, 'bathtub':16, 'others':17}  
        self.id_to_scannetid = {}
        self.scannet_raw_id_to_raw_name = {}

        with open(file_path, encoding='utf-8') as fd:
            rd = list(csv.reader(fd, delimiter="\t", quotechar='"'))
            for i in range(1, len(rd)):
                raw_id = i - 1
                scannet_raw_id = int(rd[i][0])
                raw_name = rd[i][1]
                nyu40_id = int(rd[i][4])
                nyu40_name = rd[i][7]
                self.raw_name_to_id[raw_name] = raw_id
                self.scannet_raw_id_to_raw_name[scannet_raw_id] = raw_name
                self.nyu40id_to_id[nyu40_id] = raw_id
                self.nyu40_name_to_id[nyu40_name] = raw_id
                if nyu40_name not in self.scannet_name_to_scannet_id:
                    self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id['others']
                else:
                    self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id[nyu40_name]
        
        ### add instance id from org image to pth file
        self.orgInstID_to_id = {id : id - 1 for id in range(1, 257)}
        self.orgInstID_to_id[0] = -100
        
        # add map for scannet 200
        self.scannet_raw_id_to_scannet200_id = {}
        self.scannet200_id_to_scannet_raw_id = {}
        for v, k in enumerate(VALID_CLASS_IDS_200):
            self.scannet_raw_id_to_scannet200_id[k] = v
            self.scannet200_id_to_scannet_raw_id[v] = k

def build_rotate_mat(split, rot_aug=True, rand_angle='axis'):
    if rand_angle == 'random':
        theta = np.random.rand() * np.pi * 2
    else:
        ROTATE_ANGLES = [0, np.pi/2, np.pi, np.pi*3/2]
        theta_idx = np.random.randint(len(ROTATE_ANGLES))
        theta = ROTATE_ANGLES[theta_idx]
    if (theta is not None) and (theta != 0) and (split == 'train') and rot_aug:
        rot_matrix = np.array([
            [np.cos(theta), -np.sin(theta), 0],
            [np.sin(theta), np.cos(theta), 0],
            [0, 0, 1]
        ], dtype=np.float32)
    else:
        rot_matrix = None
    return rot_matrix


def eval_ref_one_sample(pred_bbox, gt_bbox):
    """ Evaluate one reference prediction
    Args:
        pred_bbox: 8 corners of prediction bounding box, (8, 3)
        gt_bbox: 8 corners of ground truth bounding box, (8, 3)
    Returns:
        iou: intersection over union score
    """

    iou = box3d_iou(pred_bbox, gt_bbox)

    return iou

def get_box3d_min_max(corner):
    ''' Compute min and max coordinates for 3D bounding box
        Note: only for axis-aligned bounding boxes
    Input:
        corners: numpy array (8,3), assume up direction is Z (batch of N samples)
    Output:
        box_min_max: an array for min and max coordinates of 3D bounding box IoU
    '''

    min_coord = corner.min(axis=0)
    max_coord = corner.max(axis=0)
    x_min, x_max = min_coord[0], max_coord[0]
    y_min, y_max = min_coord[1], max_coord[1]
    z_min, z_max = min_coord[2], max_coord[2]

    return x_min, x_max, y_min, y_max, z_min, z_max


def box3d_iou(corners1, corners2):
    ''' Compute 3D bounding box IoU.
    Input:
        corners1: numpy array (8,3), assume up direction is Z
        corners2: numpy array (8,3), assume up direction is Z
    Output:
        iou: 3D bounding box IoU
    '''

    x_min_1, x_max_1, y_min_1, y_max_1, z_min_1, z_max_1 = get_box3d_min_max(corners1)
    x_min_2, x_max_2, y_min_2, y_max_2, z_min_2, z_max_2 = get_box3d_min_max(corners2)
    xA = np.maximum(x_min_1, x_min_2)
    yA = np.maximum(y_min_1, y_min_2)
    zA = np.maximum(z_min_1, z_min_2)
    xB = np.minimum(x_max_1, x_max_2)
    yB = np.minimum(y_max_1, y_max_2)
    zB = np.minimum(z_max_1, z_max_2)
    inter_vol = np.maximum((xB - xA), 0) * np.maximum((yB - yA), 0) * np.maximum((zB - zA), 0)
    box_vol_1 = (x_max_1 - x_min_1) * (y_max_1 - y_min_1) * (z_max_1 - z_min_1)
    box_vol_2 = (x_max_2 - x_min_2) * (y_max_2 - y_min_2) * (z_max_2 - z_min_2)
    iou = inter_vol / (box_vol_1 + box_vol_2 - inter_vol + 1e-8)

    return iou


def transform_points(points, transform, translate=True, mode="numpy"):
    """ Apply linear transform to a np array of points.
    Args:
        points (np array [..., 3]): Points to transform.
        transform (np array [3, 4] or [4, 4]): Linear map.
        translate (bool): If false, do not apply translation component of transform.
    Returns:
        transformed points (np array [..., 3])
    """
    # Append ones or zeros to get homogenous coordinates
    if translate:
        if mode == "numpy":
            constant_term = np.ones_like(points[..., :1])
        else:
            constant_term = torch.ones_like(points[..., :1])
    else:
        if mode == "numpy":
            constant_term = np.zeros_like(points[..., :1])
        else:
            constant_term = torch.zeros_like(points[..., :1])
    if mode == "numpy":
        points = np.concatenate((points, constant_term), axis=-1)
        points = np.einsum('nm,...m->...n', transform, points)
    else:
        points = torch.cat((points, constant_term), dim=-1)
        points = torch.einsum('...nm,...m->...n', transform, points)
    return points[..., :3]


def construct_bbox_corners(center, box_size):
    sx, sy, sz = box_size
    x_corners = [sx/2, sx/2, -sx/2, -sx/2, sx/2, sx/2, -sx/2, -sx/2]
    y_corners = [sy/2, -sy/2, -sy/2, sy/2, sy/2, -sy/2, -sy/2, sy/2]
    z_corners = [sz/2, sz/2, sz/2, sz/2, -sz/2, -sz/2, -sz/2, -sz/2]
    corners_3d = np.vstack([x_corners, y_corners, z_corners])
    corners_3d[0,:] = corners_3d[0,:] + center[0]
    corners_3d[1,:] = corners_3d[1,:] + center[1]
    corners_3d[2,:] = corners_3d[2,:] + center[2]
    corners_3d = np.transpose(corners_3d)

    return corners_3d


def is_explicitly_view_dependent(tokens):
    """
    :return: a boolean mask
    """
    target_words = {'front', 'behind', 'back', 'right', 'left', 'facing', 'leftmost', 'rightmost',
                    'looking', 'across'}
    for token in tokens:
        if token in target_words:
            return True
    return False


class ScanQAAnswer(object):
    def __init__(self, answers=None, unk_token='<unk>', ignore_idx=-100):
        if answers is None:
            answers = []
        self.unk_token = unk_token
        self.ignore_idx = ignore_idx
        self.vocab = {x: i for i, x in enumerate(answers)}
        with open("answer_dict.txt", "w", encoding="utf-8") as f:
            for ans, idx in self.vocab.items():
                f.write(f"{idx}\t{ans}\n")
        self.rev_vocab = dict((v, k) for k, v in self.vocab.items())

    def itos(self, i):
        if i == self.ignore_idx:
            return self.unk_token
        return self.rev_vocab[i]

    def stoi(self, v):
        if v not in self.vocab:
            return self.ignore_idx
        return self.vocab[v]

    def __len__(self):
        return len(self.vocab)

class Hypo3DAnswer(object):
    def __init__(self, answers=None):
        if answers is None:
            answers = []
        self.vocab = {x: i for i, x in enumerate(answers)}
        self.rev_vocab = dict((v, k) for k, v in self.vocab.items())

    def itos(self, i):
        return self.rev_vocab[i]

    def stoi(self, v):
        return self.vocab[v]

    def __len__(self):
        return len(self.vocab)

    
class msnnAnswer(object):
    def __init__(self, answers=None):
        if answers is None:
            answers = []
        self.vocab = {x: i for i, x in enumerate(answers)}
        self.rev_vocab = dict((v, k) for k, v in self.vocab.items())

    def itos(self, i):
        return self.rev_vocab[i]

    def stoi(self, v):
        return self.vocab[v]

    def __len__(self):
        return len(self.vocab)

class SQA3DAnswer(object):
    def __init__(self, answers=None, unk_token='u'):
        if answers is None:
            answers = []
        self.vocab = {x: i for i, x in enumerate(answers)}
        self.rev_vocab = dict((v, k) for k, v in self.vocab.items())
        self.unk_token = unk_token
        self.ignore_idx = self.vocab['u']

    def itos(self, i):
        if i == self.ignore_idx:
            return self.unk_token
        return self.rev_vocab[i]

    def stoi(self, v):
        if v not in self.vocab:
            return self.ignore_idx
        return self.vocab[v]

    def __len__(self):
        return len(self.vocab)


class MSQAAnswer(object):
    def __init__(self, answers=None, unk_token='u'):
        if answers is None:
            answers = []
        self.vocab = {x: i for i, x in enumerate(answers)}
        self.rev_vocab = dict((v, k) for k, v in self.vocab.items())
        # self.unk_token = unk_token
        # self.ignore_idx = self.vocab['u']

    def itos(self, i):
        # if i == self.ignore_idx:
        #     return self.unk_token
        return self.rev_vocab[i].strip()

    def stoi(self, v):
        # if v not in self.vocab:
        #     return self.ignore_idx
        return self.vocab[v.strip()]

    def __len__(self):
        return len(self.vocab)

def load_matrix_from_txt(path, shape=(4, 4)):
    with open(path) as f:
        txt = f.readlines()
    txt = ''.join(txt).replace('\n', ' ')
    matrix = [float(v) for v in txt.split()]
    return np.array(matrix).reshape(shape)

def pad_tensors(tensors, lens=None, pad=0):
    assert tensors.shape[0] <= lens
    if tensors.shape[0] == lens:
        return tensors
    shape = list(tensors.shape)
    shape[0] = lens - shape[0]
    res = torch.ones(shape, dtype=tensors.dtype) * pad
    res = torch.cat((tensors, res), dim=0)
    return res

def get_sqa_question_type(question):
    question = question.lstrip()
    if question[:4].lower() == 'what':
        return 0
    elif question[:2].lower() == 'is':
        return 1
    elif question[:3].lower() == 'how':
        return 2
    elif question[:3].lower() == 'can':
        return 3
    elif question[:5].lower() == 'which':
        return 4
    else:
        return 5   # others
    
    
def get_hypo_question_type(question):
    question = question.lstrip()
    if question[:4].lower() == 'what':
        return 0
    elif question[:2].lower() == 'is':
        return 1
    elif question[:3].lower() == 'how':
        return 2
    elif question[:3].lower() == 'can':
        return 3
    elif question[:5].lower() == 'which':
        return 4
    else:
        return 5   # others


class Vocabulary(object):
    def __init__(self, path=None):
        self.vocab = {}
        self.id_to_vocab = {}
        self.id_to_bert = {}

        if path is not None:
            load_dict = torch.load(path)
            self.vocab = load_dict['vocab']
            self.id_to_vocab = load_dict['id_to_vocab']
            self.id_to_bert = load_dict['id_to_bert']

    def add_token(self, token, bert_id):
        if token in self.vocab.keys():
            return
        id = len(self.vocab) 
        self.vocab[token] = id
        self.id_to_vocab[id] = token
        self.id_to_bert[id] = bert_id

    def token_to_id(self, token):
        return self.vocab[token]

    def id_to_token(self, id):
        return self.id_to_vocab[id]

    def id_to_bert_id(self, id):
        return self.id_to_bert[id]

    def save_vocab(self, path):
        save_dict = {'vocab': self.vocab, "id_to_vocab": self.id_to_vocab,
                     "id_to_bert": self.id_to_bert}
        torch.save(save_dict, path)


def random_caption_word(tokens, tokens_mask, tokenizer, vocab, mask_ratio):
    output_label = []
    output_tokens = tokens.clone()
    for i, token in enumerate(tokens): # 101 cls 102 sep use them as SOS and EOS token
        if tokens_mask[i] == 0 or token == 101:
            output_label.append(-1)
        elif token == 102:
            output_tokens[i] = tokenizer.mask_token_id
            output_label.append(vocab.token_to_id('[EOS]'))
        else:
            prob = random.random()
            # mask token with 15% probability
            if prob < mask_ratio:
                output_tokens[i] = tokenizer.mask_token_id
                output_label.append(vocab.token_to_id(tokenizer.decode([tokens[i]])))
            else:
                # no masking token (will be ignored by loss function later)
                output_label.append(-1)
    output_label = torch.Tensor(output_label).long()
    return output_tokens, output_label


def clean_answer(data):
    data = data.lower()
    data = re.sub('[ ]+$' ,'', data)
    data = re.sub('^[ ]+' ,'', data)
    data = re.sub(' {2,}', ' ', data)

    data = re.sub('\.[ ]{2,}', '. ', data)
    data = re.sub('[^a-zA-Z0-9,\'\s\-:]+', '', data)
    data = re.sub('ç' ,'c', data)
    data = re.sub('’' ,'\'', data)
    data = re.sub(r'\bletf\b' ,'left', data)
    data = re.sub(r'\blet\b' ,'left', data)
    data = re.sub(r'\btehre\b' ,'there', data)
    data = re.sub(r'\brigth\b' ,'right', data)
    data = re.sub(r'\brght\b' ,'right', data)
    data = re.sub(r'\bbehine\b', 'behind', data)
    data = re.sub(r'\btv\b' ,'TV', data)
    data = re.sub(r'\bchai\b' ,'chair', data)
    data = re.sub(r'\bwasing\b' ,'washing', data)
    data = re.sub(r'\bwaslked\b' ,'walked', data)
    data = re.sub(r'\boclock\b' ,'o\'clock', data)
    data = re.sub(r'\bo\'[ ]+clock\b' ,'o\'clock', data)

    # digit to word, only for answer
    data = re.sub(r'\b0\b', 'zero', data)
    data = re.sub(r'\bnone\b', 'zero', data)
    data = re.sub(r'\b1\b', 'one', data)
    data = re.sub(r'\b2\b', 'two', data)
    data = re.sub(r'\b3\b', 'three', data)
    data = re.sub(r'\b4\b', 'four', data)
    data = re.sub(r'\b5\b', 'five', data)
    data = re.sub(r'\b6\b', 'six', data)
    data = re.sub(r'\b7\b', 'seven', data)
    data = re.sub(r'\b8\b', 'eight', data)
    data = re.sub(r'\b9\b', 'nine', data)
    data = re.sub(r'\b10\b', 'ten', data)
    data = re.sub(r'\b11\b', 'eleven', data)
    data = re.sub(r'\b12\b', 'twelve', data)
    data = re.sub(r'\b13\b', 'thirteen', data)
    data = re.sub(r'\b14\b', 'fourteen', data)
    data = re.sub(r'\b15\b', 'fifteen', data)
    data = re.sub(r'\b16\b', 'sixteen', data)
    data = re.sub(r'\b17\b', 'seventeen', data)
    data = re.sub(r'\b18\b', 'eighteen', data)
    data = re.sub(r'\b19\b', 'nineteen', data)
    data = re.sub(r'\b20\b', 'twenty', data)
    data = re.sub(r'\b23\b', 'twenty-three', data)

    # misc
    # no1, mat2, etc
    data = re.sub(r'\b([a-zA-Z]+)([0-9])\b' ,r'\g<1>', data)
    data = re.sub(r'\ba\b ([a-zA-Z]+)' ,r'\g<1>', data)
    data = re.sub(r'\ban\b ([a-zA-Z]+)' ,r'\g<1>', data)
    data = re.sub(r'\bthe\b ([a-zA-Z]+)' ,r'\g<1>', data)

    data = re.sub(r'\bbackwards\b', 'backward', data)

    return data


if __name__ == "__main__":
    path = "/home/baoxiong/Desktop/gpt_gen_language.json"
    import json
    with open(path, "r") as f:
        data = json.load(f)
        padded = per_scene_pad(data)
        print(padded)