File size: 6,007 Bytes
c94c8c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import json
from glob import glob
from omegaconf import OmegaConf
from joblib import Parallel, delayed, parallel_backend

import torch
import numpy as np
import trimesh
import open3d as o3d
from tqdm import tqdm

from preprocess.build import ProcessorBase
from preprocess.utils.label_convert import RSCAN_SCANNET as label_convert
from preprocess.utils.align_utils import compute_box_3d, calc_align_matrix, rotate_z_axis_by_degrees
from preprocess.utils.constant import *


class RScanProcessor(ProcessorBase):
    def record_splits(self, scan_ids, ratio=0.8):
        split_dir = self.save_root / 'split'
        split_dir.mkdir(exist_ok=True)
        if (split_dir / 'train_split.txt').exists() and (split_dir / 'val_split.txt').exists():
            return
        scan_len = len(scan_ids)
        split = {
            'train': [],
            'val': []}
        cur_split = 'train'
        for scan_id in tqdm(sorted(scan_ids)):
            split[cur_split].append(scan_id)
            if len(split['train']) > ratio*scan_len:
                cur_split = 'val'
        for _s, _c in split.items():
            with open(split_dir / f'{_s}_split.txt', 'w', encoding='utf-8') as fp:
                fp.write('\n'.join(_c))

    def read_all_scans(self):
        scan_paths = glob(str(self.data_root) + '/*')
        scan_ids = [path.split('/')[-1] for path in scan_paths]
        return scan_ids

    def process_point_cloud(self, scan_id, plydata, annotations):
        plylabel, segments, aggregation = annotations
        vertices = plydata.vertices
        vertex_colors = trimesh.visual.uv_to_color(plydata.visual.uv, plydata.visual.material.image)
        vertex_colors = vertex_colors[:, :3] / 255.0

        none_list = list()
        seg_to_inst = {} # segment id to object id
        inst_to_label = {} # object id to label name
        seg_indices = segments['segIndices']
        seg_group = aggregation['segGroups']
        bbox_list = []
        for i, _ in enumerate(seg_group):
            if seg_group[i]['label'] not in label_convert:
                none_list.append(seg_group[i]['label'])
                continue
            inst_to_label[seg_group[i]['id']] = label_convert[seg_group[i]['label']]

            rotation = np.array(seg_group[i]["obb"]["normalizedAxes"]).reshape(3, 3)
            transform = np.array(seg_group[i]["obb"]["centroid"]).reshape(-1, 3)
            scale = np.array(seg_group[i]["obb"]["axesLengths"]).reshape(-1, 3)
            trns = np.eye(4)
            trns[0:3, 3] = transform
            trns[0:3, 0:3] = rotation.T
            box3d = compute_box_3d(scale.reshape(3).tolist(), transform, rotation)
            bbox_list.append(box3d)

            for j in seg_group[i]['segments']:
                seg_to_inst[j] = seg_group[i]['id']
                assert seg_group[i]['id'] == seg_group[i]['objectId']
                assert seg_group[i]['id'] > 0

        query_points = vertices
        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(np.array(plylabel.vertices, dtype=np.float64))
        tree = o3d.geometry.KDTreeFlann(pcd)

        out_instance = []

        for i, _ in enumerate(query_points):
            point = query_points[i]
            [k, idx, distance] = tree.search_radius_vector_3d(point,0.1)
            if k == 0:
                out_instance.append(-1)
            else:
                nn_idx = idx[0]
                if seg_indices[nn_idx] not in seg_to_inst.keys():
                    out_instance.append(-1)
                else:
                    out_instance.append(seg_to_inst[seg_indices[nn_idx]])

        # alignment: axis-aligned rotation
        align_angle = calc_align_matrix(bbox_list)
        vertices = rotate_z_axis_by_degrees(np.array(vertices), align_angle)
        # alignment: color range
        if np.max(vertex_colors) <= 1:
            vertex_colors = vertex_colors * 255.0
        # alignment: translation
        center_points = np.mean(vertices, axis=0)
        center_points[2] = np.min(vertices[:, 2])
        vertices= vertices - center_points
        vertex_instance = np.array(out_instance)

        assert vertex_colors.shape == vertices.shape
        assert vertex_colors.shape[0] == vertex_instance.shape[0]

        if self.check_key(self.output.pcd):
            torch.save(inst_to_label, self.inst2label_path / f"{scan_id}.pth")
            torch.save((vertices, vertex_colors, vertex_instance), self.pcd_path / f"{scan_id}.pth")
            np.save(self.pcd_path / f"{scan_id}_align_angle.npy", align_angle)

    def scene_proc(self, scan_id):
        data_root = self.data_root / scan_id
        plydata = trimesh.load(data_root / 'mesh.refined.v2.obj', process=False)
        if not (data_root / 'labels.instances.annotated.v2.ply').exists():
            return
        plylabel = trimesh.load(data_root / 'labels.instances.annotated.v2.ply', process=False)
        with open((data_root / 'mesh.refined.0.010000.segs.v2.json'), "r", encoding='utf-8') as f:
            segments = json.load(f)
        with open((data_root / 'semseg.v2.json'), "r", encoding='utf-8') as f:
            aggregation = json.load(f)

        # process point cloud
        self.process_point_cloud(scan_id, plydata, (plylabel, segments, aggregation))

    def process_scans(self):
        scan_ids = self.read_all_scans()
        self.log_starting_info(len(scan_ids))

        if self.num_workers > 1:
            with parallel_backend('multiprocessing', n_jobs=self.num_workers):
                Parallel()(delayed(self.scene_proc)(scan_id) for scan_id in tqdm(scan_ids))
        else:
            for scan_id in tqdm(scan_ids):
                self.scene_proc(scan_id)


if __name__ == '__main__':
    cfg = OmegaConf.create({
        'data_root': '/path/to/3RScan',
        'save_root': '/output/path/to/3RScan',
        'num_workers': 1,
        'output': {
            'pcd': True,
        }
    })
    processor = RScanProcessor(cfg)
    processor.process_scans()