File size: 5,436 Bytes
c94c8c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import random
import json
from pathlib import Path

import numpy as np
import torch
import open3d as o3d


def convert_pc_to_box(obj_pc):
    xmin = np.min(obj_pc[:,0])
    ymin = np.min(obj_pc[:,1])
    zmin = np.min(obj_pc[:,2])
    xmax = np.max(obj_pc[:,0])
    ymax = np.max(obj_pc[:,1])
    zmax = np.max(obj_pc[:,2])
    center = [(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2]
    box_size = [xmax-xmin, ymax-ymin, zmax-zmin]
    return center, box_size


def load_scan(pcd_path, inst2label_path, scene_name):
    pcd_data = torch.load(pcd_path / f'{scene_name}.pth')
    inst_to_label = torch.load(inst2label_path / f"{scene_name}.pth")
    points, colors, instance_labels = pcd_data[0], pcd_data[1], pcd_data[-1]
    pcds = np.concatenate([points, colors], 1)
    return points, colors, pcds, instance_labels, inst_to_label


def visualize_one_scene(obj_pcds, points, colors, caption):
    # visualize scene
    o3d_pcd = o3d.geometry.PointCloud()
    o3d_pcd.points = o3d.utility.Vector3dVector(points)
    o3d_pcd.colors = o3d.utility.Vector3dVector(colors / 255.0)
    # visualize gt
    for idx, (obj, obj_label) in enumerate(obj_pcds):
        if idx > 3:
            break
        gt_center, gt_size = convert_pc_to_box(obj)
        gt_o3d_box = o3d.geometry.OrientedBoundingBox(gt_center, np.eye(3,3), gt_size)
        gt_o3d_box.color = [0, 1, 0]
        mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.6, origin=[-0, -0, -0])
        o3d.visualization.draw_geometries([o3d_pcd, gt_o3d_box, mesh_frame], window_name=obj_label+'_'+caption)


def visualize_data(save_root, scene_name, vis_obj=True):
    inst2label_path = save_root / 'instance_id_to_label'
    pcd_path = save_root / 'pcd_with_global_alignment'

    points, colors, pcds, instance_labels, inst_to_label = load_scan(pcd_path, inst2label_path, scene_name)

    if not vis_obj:
        o3d_pcd = o3d.geometry.PointCloud()
        mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.6, origin=[-0, -0, -0])
        o3d_pcd.points = o3d.utility.Vector3dVector(points)
        o3d_pcd.colors = o3d.utility.Vector3dVector(colors / 255.0)
        o3d.visualization.draw_geometries([mesh_frame, o3d_pcd])
        return

    obj_pcds = []
    for i in inst_to_label.keys():
        mask = instance_labels == i     # time consuming
        if np.sum(mask) == 0:
            continue
        obj_pcds.append((pcds[mask], inst_to_label[i]))

    visualize_one_scene(obj_pcds, points, colors, scene_name)

def visualize_refer(save_root, anno_file):
    inst2label_path = save_root / 'instance_id_to_label'
    pcd_path = save_root / 'pcd_with_global_alignment'
    json_data = json.load(open(anno_file, 'r', encoding='utf8'))
    for item in json_data:
        scan_id = item['scan_id']
        inst2label_path = save_root / 'instance_id_to_label'
        pcd_path = save_root / 'pcd_with_global_alignment'

        inst_to_label = torch.load(inst2label_path / f"{scan_id}.pth")
        pcd_data = torch.load(pcd_path / f'{scan_id}.pth')
        points, colors, instance_labels = pcd_data[0], pcd_data[1], pcd_data[-1]
        pcds = np.concatenate([points, colors], 1)

        target_id = int(item['target_id'])
        mask = instance_labels == target_id
        if np.sum(mask) == 0:
            continue

        obj_pcds = [(pcds[mask], inst_to_label[target_id])]
        visualize_one_scene(obj_pcds, points, colors, scan_id+'-'+item['utterance'])


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-r", "--root", required=True, type=str, help="path of dataset dir")
    parser.add_argument("-d", "--dataset", type=str,
                        help="available datasets in ['ARKitScenes', 'HM3D', 'MultiScan', 'ProcThor', \
                        'Structured3D', 'ScanNet', '3RScan']")
    parser.add_argument("--vis_refer", action="store_true",
                        help="visualize reference data")
    parser.add_argument("-a", "--anno", type=str, default="ssg_ref_rel2_template.json",
                        help="the annotation file for reference")
    args = parser.parse_args()
    dataset = args.dataset
    assert dataset in ['ARKitScenes', 'HM3D', 'MultiScan', 'ProcThor', 'Structured3D', 'ScanNet', '3RScan']
    print(dataset)
    data_root = Path(args.root) / dataset
    if args.vis_refer:
        if dataset == 'ScanNet':
            anno_file = data_root / 'annotations/refer' / args.anno
        else:
            anno_file = data_root / 'annotations' / args.anno

        visualize_refer(data_root / 'scan_data', anno_file)
    else:
        all_scans = (data_root / 'scan_data' / 'pcd_with_global_alignment').glob('*.pth')
        scene_id = Path(random.choice(list(all_scans))).stem
        visualize_data(data_root / 'scan_data', scene_id)


# from transformers import BertConfig, BertModel, BertTokenizer

# hidden_size=768
# num_hidden_layers=4
# num_attention_heads=12
# type_vocab_size=2

# weights="bert-base-uncased"
# tok = BertTokenizer.from_pretrained("bert-base-uncased")
# print(tok.convert_tokens_to_ids("all_good"))  # should print an int, not crash

# bert_config = BertConfig(
#     hidden_size=hidden_size,
#     num_hidden_layers=num_hidden_layers,
#     num_attention_heads=num_attention_heads,
#     type_vocab_size=type_vocab_size
# )
# model = BertModel.from_pretrained(
#     weights, config=bert_config
#         )