|
|
from typing import Optional |
|
|
|
|
|
import einops |
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from torch import Tensor, nn |
|
|
|
|
|
from modules.utils import get_activation_fn |
|
|
|
|
|
|
|
|
class CrossAttentionLayer(nn.Module): |
|
|
|
|
|
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", |
|
|
k_dim=None, v_dim=None, prenorm=True): |
|
|
super().__init__() |
|
|
if k_dim is None: |
|
|
k_dim = d_model |
|
|
if v_dim is None: |
|
|
v_dim = d_model |
|
|
self.prenorm = prenorm |
|
|
self.multihead_attn = nn.MultiheadAttention( |
|
|
d_model, nhead, dropout=dropout, batch_first=True, kdim=k_dim, vdim=v_dim |
|
|
) |
|
|
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
|
self.dropout = nn.Dropout(dropout) |
|
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
|
|
self.norm1 = nn.LayerNorm(d_model) |
|
|
self.norm2 = nn.LayerNorm(d_model) |
|
|
self.norm3 = nn.LayerNorm(d_model) |
|
|
self.dropout1 = nn.Dropout(dropout) |
|
|
self.dropout2 = nn.Dropout(dropout) |
|
|
self.dropout3 = nn.Dropout(dropout) |
|
|
|
|
|
self.activation = get_activation_fn(activation) |
|
|
|
|
|
def forward( |
|
|
self, tgt, memory, |
|
|
tgt_mask: Optional[Tensor] = None, |
|
|
memory_mask: Optional[Tensor] = None, |
|
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
|
): |
|
|
tgt2 = tgt |
|
|
if self.prenorm: |
|
|
tgt2 = self.norm1(tgt2) |
|
|
tgt2, cross_attn_matrices = self.multihead_attn( |
|
|
query=tgt2, key=memory, |
|
|
value=memory, attn_mask=memory_mask, |
|
|
key_padding_mask=memory_key_padding_mask |
|
|
) |
|
|
tgt = tgt + self.dropout2(tgt2) |
|
|
if not self.prenorm: |
|
|
tgt = self.norm1(tgt) |
|
|
if self.prenorm: |
|
|
tgt2 = self.norm3(tgt) |
|
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) |
|
|
tgt = tgt + self.dropout3(tgt2) |
|
|
if not self.prenorm: |
|
|
tgt = self.norm3(tgt) |
|
|
return tgt, cross_attn_matrices |
|
|
|
|
|
|
|
|
class TransformerDecoderLayer(nn.Module): |
|
|
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu"): |
|
|
super().__init__() |
|
|
self.self_attn = nn.MultiheadAttention( |
|
|
d_model, nhead, dropout=dropout, batch_first=True |
|
|
) |
|
|
self.multihead_attn = nn.MultiheadAttention( |
|
|
d_model, nhead, dropout=dropout, batch_first=True |
|
|
) |
|
|
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
|
self.dropout = nn.Dropout(dropout) |
|
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
|
|
self.norm1 = nn.LayerNorm(d_model) |
|
|
self.norm2 = nn.LayerNorm(d_model) |
|
|
self.norm3 = nn.LayerNorm(d_model) |
|
|
self.dropout1 = nn.Dropout(dropout) |
|
|
self.dropout2 = nn.Dropout(dropout) |
|
|
self.dropout3 = nn.Dropout(dropout) |
|
|
|
|
|
self.activation = get_activation_fn(activation) |
|
|
|
|
|
def forward( |
|
|
self, tgt, memory, |
|
|
tgt_mask: Optional[Tensor] = None, |
|
|
memory_mask: Optional[Tensor] = None, |
|
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
|
): |
|
|
tgt2 = self.norm1(tgt) |
|
|
tgt2, self_attn_matrices = self.self_attn( |
|
|
query=tgt2, key=tgt2, value=tgt2, attn_mask=tgt_mask, |
|
|
key_padding_mask=tgt_key_padding_mask |
|
|
) |
|
|
tgt = tgt + self.dropout1(tgt2) |
|
|
tgt2 = self.norm2(tgt) |
|
|
tgt2, cross_attn_matrices = self.multihead_attn( |
|
|
query=tgt2, key=memory, |
|
|
value=memory, attn_mask=memory_mask, |
|
|
key_padding_mask=memory_key_padding_mask |
|
|
) |
|
|
tgt = tgt + self.dropout2(tgt2) |
|
|
tgt2 = self.norm3(tgt) |
|
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) |
|
|
tgt = tgt + self.dropout3(tgt2) |
|
|
return tgt, self_attn_matrices, cross_attn_matrices |
|
|
|
|
|
|
|
|
class TransformerEncoderLayer(nn.Module): |
|
|
def __init__(self, d_model, nhead, dim_feedforward=2048, batch_first=True, dropout=0.1, activation="relu", prenorm=False): |
|
|
super().__init__() |
|
|
self.self_attn = nn.MultiheadAttention( |
|
|
d_model, nhead, dropout=dropout, batch_first=batch_first |
|
|
) |
|
|
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
|
self.dropout = nn.Dropout(dropout) |
|
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
|
|
self.norm1 = nn.LayerNorm(d_model) |
|
|
self.norm2 = nn.LayerNorm(d_model) |
|
|
self.dropout1 = nn.Dropout(dropout) |
|
|
self.dropout2 = nn.Dropout(dropout) |
|
|
|
|
|
self.activation = get_activation_fn(activation) |
|
|
self.prenorm = prenorm |
|
|
|
|
|
def forward( |
|
|
self, tgt, tgt_mask: Optional[Tensor] = None, |
|
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
|
): |
|
|
tgt2 = tgt |
|
|
if self.prenorm: |
|
|
tgt2 = self.norm1(tgt2) |
|
|
tgt2, self_attn_matrices = self.self_attn( |
|
|
query=tgt2, key=tgt2, value=tgt2, attn_mask=tgt_mask, |
|
|
key_padding_mask=tgt_key_padding_mask |
|
|
) |
|
|
tgt = tgt + self.dropout1(tgt2) |
|
|
if not self.prenorm: |
|
|
tgt = self.norm1(tgt) |
|
|
if self.prenorm: |
|
|
tgt = self.norm2(tgt) |
|
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) |
|
|
tgt = tgt + self.dropout2(tgt2) |
|
|
if not self.prenorm: |
|
|
tgt = self.norm2(tgt) |
|
|
return tgt, self_attn_matrices |
|
|
|
|
|
|
|
|
class MultiHeadAttentionSpatial(nn.Module): |
|
|
def __init__( |
|
|
self, d_model, n_head, dropout=0.1, spatial_multihead=True, spatial_dim=5, |
|
|
spatial_attn_fusion='mul', |
|
|
): |
|
|
super().__init__() |
|
|
assert d_model % n_head == 0, 'd_model: %d, n_head: %d' % (d_model, n_head) |
|
|
|
|
|
self.n_head = n_head |
|
|
self.d_model = d_model |
|
|
self.d_per_head = d_model // n_head |
|
|
self.spatial_multihead = spatial_multihead |
|
|
self.spatial_dim = spatial_dim |
|
|
self.spatial_attn_fusion = spatial_attn_fusion |
|
|
|
|
|
self.w_qs = nn.Linear(d_model, d_model) |
|
|
self.w_ks = nn.Linear(d_model, d_model) |
|
|
self.w_vs = nn.Linear(d_model, d_model) |
|
|
|
|
|
self.fc = nn.Linear(d_model, d_model) |
|
|
|
|
|
self.spatial_n_head = n_head if spatial_multihead else 1 |
|
|
if self.spatial_attn_fusion in ['mul', 'bias', 'add']: |
|
|
self.pairwise_loc_fc = nn.Linear(spatial_dim, self.spatial_n_head) |
|
|
elif self.spatial_attn_fusion == 'ctx': |
|
|
self.pairwise_loc_fc = nn.Linear(spatial_dim, d_model) |
|
|
elif self.spatial_attn_fusion == 'cond': |
|
|
self.lang_cond_fc = nn.Linear(d_model, self.spatial_n_head * (spatial_dim + 1)) |
|
|
else: |
|
|
raise NotImplementedError('unsupported spatial_attn_fusion %s' % (self.spatial_attn_fusion)) |
|
|
|
|
|
def forward(self, q, k, v, pairwise_locs, key_padding_mask=None, txt_embeds=None): |
|
|
residual = q |
|
|
q = einops.rearrange(self.w_qs(q), 'b l (head k) -> head b l k', head=self.n_head) |
|
|
k = einops.rearrange(self.w_ks(k), 'b t (head k) -> head b t k', head=self.n_head) |
|
|
v = einops.rearrange(self.w_vs(v), 'b t (head v) -> head b t v', head=self.n_head) |
|
|
attn = torch.einsum('hblk,hbtk->hblt', q, k) / np.sqrt(q.shape[-1]) |
|
|
|
|
|
if self.spatial_attn_fusion in ['mul', 'bias', 'add']: |
|
|
loc_attn = self.pairwise_loc_fc(pairwise_locs) |
|
|
loc_attn = einops.rearrange(loc_attn, 'b l t h -> h b l t') |
|
|
if self.spatial_attn_fusion == 'mul': |
|
|
loc_attn = F.relu(loc_attn) |
|
|
if not self.spatial_multihead: |
|
|
loc_attn = einops.repeat(loc_attn, 'h b l t -> (h nh) b l t', nh=self.n_head) |
|
|
elif self.spatial_attn_fusion == 'ctx': |
|
|
loc_attn = self.pairwise_loc_fc(pairwise_locs) |
|
|
loc_attn = einops.rearrange(loc_attn, 'b l t (h k) -> h b l t k', h=self.n_head) |
|
|
loc_attn = torch.einsum('hblk,hbltk->hblt', q, loc_attn) / np.sqrt(q.shape[-1]) |
|
|
elif self.spatial_attn_fusion == 'cond': |
|
|
spatial_weights = self.lang_cond_fc(residual) |
|
|
spatial_weights = einops.rearrange(spatial_weights, 'b l (h d) -> h b l d', h=self.spatial_n_head, |
|
|
d=self.spatial_dim + 1) |
|
|
if self.spatial_n_head == 1: |
|
|
spatial_weights = einops.repeat(spatial_weights, '1 b l d -> h b l d', h=self.n_head) |
|
|
spatial_bias = spatial_weights[..., :1] |
|
|
spatial_weights = spatial_weights[..., 1:] |
|
|
loc_attn = torch.einsum('hbld,bltd->hblt', spatial_weights, pairwise_locs) + spatial_bias |
|
|
loc_attn = torch.sigmoid(loc_attn) |
|
|
|
|
|
if key_padding_mask is not None: |
|
|
mask = einops.repeat(key_padding_mask, 'b t -> h b l t', h=self.n_head, l=q.size(2)) |
|
|
attn = attn.masked_fill(mask, -np.inf) |
|
|
if self.spatial_attn_fusion in ['mul', 'cond']: |
|
|
loc_attn = loc_attn.masked_fill(mask, 0) |
|
|
else: |
|
|
loc_attn = loc_attn.masked_fill(mask, -np.inf) |
|
|
|
|
|
if self.spatial_attn_fusion == 'add': |
|
|
fused_attn = (torch.softmax(attn, 3) + torch.softmax(loc_attn, 3)) / 2 |
|
|
else: |
|
|
if self.spatial_attn_fusion in ['mul', 'cond']: |
|
|
fused_attn = torch.log(torch.clamp(loc_attn, min=1e-6)) + attn |
|
|
else: |
|
|
fused_attn = loc_attn + attn |
|
|
fused_attn = torch.softmax(fused_attn, 3) |
|
|
|
|
|
assert torch.sum(torch.isnan(fused_attn) == 0), print(fused_attn) |
|
|
|
|
|
output = torch.einsum('hblt,hbtv->hblv', fused_attn, v) |
|
|
output = einops.rearrange(output, 'head b l v -> b l (head v)') |
|
|
output = self.fc(output) |
|
|
return output, fused_attn |
|
|
|
|
|
|
|
|
class TransformerSpatialDecoderLayer(TransformerDecoderLayer): |
|
|
def __init__( |
|
|
self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", |
|
|
spatial_multihead=True, spatial_dim=5, spatial_attn_fusion='mul' |
|
|
): |
|
|
super().__init__( |
|
|
d_model, nhead, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation |
|
|
) |
|
|
del self.self_attn |
|
|
self.self_attn = MultiHeadAttentionSpatial( |
|
|
d_model, nhead, dropout=dropout, |
|
|
spatial_multihead=spatial_multihead, |
|
|
spatial_dim=spatial_dim, |
|
|
spatial_attn_fusion=spatial_attn_fusion, |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, tgt, memory, |
|
|
tgt_pairwise_locs: Optional[Tensor] = None, |
|
|
tgt_mask: Optional[Tensor] = None, |
|
|
memory_mask: Optional[Tensor] = None, |
|
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
|
): |
|
|
tgt2 = self.norm1(tgt) |
|
|
tgt2, self_attn_matrices = self.self_attn( |
|
|
tgt2, tgt2, tgt2, tgt_pairwise_locs, |
|
|
key_padding_mask=tgt_key_padding_mask |
|
|
) |
|
|
tgt = tgt + self.dropout1(tgt2) |
|
|
tgt2 = self.norm2(tgt) |
|
|
tgt2, cross_attn_matrices = self.multihead_attn( |
|
|
query=tgt2, key=memory, |
|
|
value=memory, attn_mask=memory_mask, |
|
|
key_padding_mask=memory_key_padding_mask |
|
|
) |
|
|
tgt = tgt + self.dropout2(tgt2) |
|
|
tgt2 = self.norm3(tgt) |
|
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) |
|
|
tgt = tgt + self.dropout3(tgt2) |
|
|
return tgt, self_attn_matrices, cross_attn_matrices |
|
|
|
|
|
|
|
|
class TransformerSpatialEncoderLayer(TransformerEncoderLayer): |
|
|
def __init__( |
|
|
self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", |
|
|
spatial_multihead=True, spatial_dim=5, spatial_attn_fusion='mul' |
|
|
): |
|
|
super().__init__( |
|
|
d_model, nhead, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation |
|
|
) |
|
|
del self.self_attn |
|
|
self.self_attn = MultiHeadAttentionSpatial( |
|
|
d_model, nhead, dropout=dropout, |
|
|
spatial_multihead=spatial_multihead, |
|
|
spatial_dim=spatial_dim, |
|
|
spatial_attn_fusion=spatial_attn_fusion, |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, tgt, tgt_pairwise_locs, |
|
|
tgt_mask: Optional[Tensor] = None, |
|
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
|
): |
|
|
tgt2 = tgt |
|
|
tgt2, self_attn_matrices = self.self_attn( |
|
|
tgt2, tgt2, tgt2, tgt_pairwise_locs, |
|
|
key_padding_mask=tgt_key_padding_mask |
|
|
) |
|
|
tgt = tgt + self.dropout1(tgt2) |
|
|
tgt = self.norm1(tgt) |
|
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) |
|
|
tgt = tgt + self.dropout2(tgt2) |
|
|
tgt = self.norm2(tgt) |
|
|
return tgt, self_attn_matrices |
|
|
|