| # import os | |
| # import json | |
| # import torch | |
| # from huggingface_hub import list_repo_files, hf_hub_download | |
| # from safetensors.torch import load_file | |
| # REPO_ID = "MatchLab/PointMapVerse" | |
| # SUBFOLDER = "light_arkitscenes" | |
| # def pointmap_to_points(pm: torch.Tensor, max_points: int = 4096) -> torch.Tensor: | |
| # """ | |
| # Convert [H, W, 3] point map to [N, 3] points, with subsampling. | |
| # """ | |
| # pm = pm.float() | |
| # pts = pm.reshape(-1, 3) | |
| # pts = pts[pts.norm(dim=-1) > 0] # remove zero points | |
| # if pts.shape[0] > max_points: | |
| # pts = pts[torch.randperm(pts.shape[0])[:max_points]] | |
| # return pts | |
| # def chamfer_distance(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: | |
| # """ | |
| # Symmetric Chamfer distance between two point sets a, b: [N,3], [M,3] | |
| # """ | |
| # d = torch.cdist(a, b, p=2) | |
| # return d.min(dim=1).values.mean() + d.min(dim=0).values.mean() | |
| # def compute_chamfer_rankings_for_scene(scene_path: str, repo_id: str): | |
| # """ | |
| # For a single safetensors scene file, compute sorted Chamfer rankings | |
| # for each view. | |
| # Returns a list of dicts for JSON. | |
| # """ | |
| # local_path = hf_hub_download(repo_id, scene_path, repo_type="dataset") | |
| # data = load_file(local_path) | |
| # point_maps = data["point_map"] # [V, H, W, 3] | |
| # num_views = point_maps.shape[0] | |
| # # Precompute point clouds per view | |
| # pcs = [pointmap_to_points(point_maps[v]) for v in range(num_views)] | |
| # scene_id = os.path.basename(scene_path).split(".")[0] # e.g. scene0000_01 | |
| # results = [] | |
| # for i in range(num_views): | |
| # pts_i = pcs[i] | |
| # dists = [] | |
| # for j in range(num_views): | |
| # if i == j: | |
| # continue | |
| # d = chamfer_distance(pts_i, pcs[j]).item() | |
| # dists.append((j, d)) | |
| # # sort by Chamfer distance | |
| # dists_sorted = sorted(dists, key=lambda x: x[1]) | |
| # sorted_views = [j for (j, _) in dists_sorted] | |
| # item = { | |
| # "scene_id": scene_id, | |
| # "cur_view": i, | |
| # "sorted_views": sorted_views, | |
| # } | |
| # results.append( | |
| # item | |
| # ) | |
| # print(item) | |
| # return results | |
| # def load_all_scenes_and_dump_json( | |
| # repo_id: str = REPO_ID, | |
| # subfolder: str = SUBFOLDER, | |
| # output_json: str = "light_arkitscenes_chamfer_rankings.json", | |
| # ): | |
| # print("📂 Listing files…") | |
| # files = list_repo_files(repo_id, repo_type="dataset") | |
| # # Filter for safetensors inside subfolder/ | |
| # scene_files = [f for f in files if f.startswith(subfolder) and f.endswith(".safetensors")] | |
| # print(f"🔍 Found {len(scene_files)} scenes") | |
| # all_entries = [] | |
| # for fname in sorted(scene_files): | |
| # print(f"➡️ Processing scene: {fname}") | |
| # scene_entries = compute_chamfer_rankings_for_scene(fname, repo_id) | |
| # all_entries.extend(scene_entries) | |
| # print(f"💾 Saving JSON to: {output_json}") | |
| # with open(output_json, "w") as f: | |
| # json.dump(all_entries, f, indent=2) | |
| # print("✅ Finished computing Chamfer rankings for all scenes") | |
| # return all_entries | |
| # if __name__ == "__main__": | |
| # load_all_scenes_and_dump_json(REPO_ID, SUBFOLDER) | |
| # from transformers import AutoModel, AutoTokenizer | |
| # text_encoder = AutoModel.from_pretrained('jinaai/jina-clip-v2', trust_remote_code=True) | |
| # tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-clip-v2', trust_remote_code=True) | |
| # from safetensors.torch import load_file | |
| # from safetensors.torch import load | |
| # from huggingface_hub import hf_hub_download | |
| # def load_safetensor_from_hf(repo_id, filename, repo_type="dataset"): | |
| # if filename.startswith('cc3m'): | |
| # with open(filename, "rb") as f: | |
| # return load(f.read()) | |
| # else: | |
| # cached_path = hf_hub_download( | |
| # repo_id=repo_id, | |
| # filename=filename, | |
| # repo_type=repo_type, | |
| # local_files_only=True | |
| # ) | |
| # return load_file(cached_path) | |
| from huggingface_hub import snapshot_download | |
| from pathlib import Path | |
| # ---- Config ---- | |
| REPO_ID = "MatchLab/ScenePointv2" # e.g. "openai/light_lsun" | |
| SUBFOLDER = "light_lsun" | |
| LOCAL_DIR = "./light_lsun" | |
| # ---- Download ---- | |
| snapshot_download( | |
| repo_id=REPO_ID, | |
| repo_type="dataset", | |
| local_dir=LOCAL_DIR, | |
| allow_patterns=[f"{SUBFOLDER}/**"], | |
| local_dir_use_symlinks=False, | |
| ) | |
| print(f"✅ Downloaded {SUBFOLDER} to {Path(LOCAL_DIR).resolve()}") | |