import functools import pickle import torch import torch.distributed as dist import logging logger = logging.getLogger(__name__) ########################### Basic utility for distributed info ################################ def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_rank(): """ Get the rank of the current process. """ if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def get_world_size(): """ Get the size of the world. """ if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def is_master_proc(num_gpus=8): """ Determines if the current process is the master process on each node. """ if is_dist_avail_and_initialized(): return dist.get_rank() % num_gpus == 0 else: return True def is_root_proc(): """ Determines if the current process is the root process. """ if is_dist_avail_and_initialized(): return dist.get_rank() == 0 else: return True ############################## Data gathering across devices ################################## def _serialize_to_tensor(data, group, max_size=1024): """ Serialize the tensor to ByteTensor. Note that only `gloo` and `nccl` backend is supported. Args: data (data): data to be serialized. group (group): pytorch dist group. Returns: tensor (ByteTensor): tensor that serialized. """ backend = dist.get_backend(group) assert backend in ["gloo", "nccl"] device = torch.device("cpu" if backend == "gloo" else "cuda") buffer = pickle.dumps(data) if len(buffer) > max_size ** 3: logger.warning( "Rank {} trying to all-gather {:.2f} GB of data on device {}".format( get_rank(), len(buffer) / (max_size ** 3), device ) ) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to(device=device) return tensor def _pad_to_largest_tensor(tensor, group): """ Padding all the tensors from different GPUs to the largest ones. Args: tensor (tensor): tensor to pad. group (group): pytorch dist group. Returns: list[int]: size of the tensor, on each rank Tensor: padded tensor that has the max size """ world_size = dist.get_world_size(group=group) assert ( world_size >= 1 ), "comm.gather/all_gather must be called from ranks within the given group!" local_size = torch.tensor( [tensor.numel()], dtype=torch.int64, device=tensor.device ) size_list = [ torch.zeros([1], dtype=torch.int64, device=tensor.device) for _ in range(world_size) ] dist.all_gather(size_list, local_size, group=group) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes if local_size != max_size: padding = torch.zeros( (max_size - local_size,), dtype=torch.uint8, device=tensor.device ) tensor = torch.cat((tensor, padding), dim=0) return size_list, tensor def broadcast(object): if isinstance(object, torch.Tensor): dist.broadcast(tensor=object, src=0) else: sync_tensor = torch.Tensor([object]).cuda() dist.broadcast(tensor=sync_tensor, src=0) object = sync_tensor[0].item() return object def all_gather(tensors): """ All gathers the provided tensors from all processes across machines. Args: tensors (list): tensors to perform all gather across all processes in all machines. """ gather_list = [] output_tensor = [] world_size = dist.get_world_size() for tensor in tensors: tensor_placeholder = [ torch.ones_like(tensor) for _ in range(world_size) ] dist.all_gather(tensor_placeholder, tensor, async_op=False) gather_list.append(tensor_placeholder) for gathered_tensor in gather_list: output_tensor.append(torch.cat(gathered_tensor, dim=0)) return output_tensor def all_reduce(tensors, average=True): """ All reduce the provided tensors from all processes across machines. Args: tensors (list): tensors to perform all reduce across all processes in all machines. average (bool): scales the reduced tensor by the number of overall processes across all machines. """ for tensor in tensors: dist.all_reduce(tensor, async_op=False) if average: world_size = dist.get_world_size() for tensor in tensors: tensor.mul_(1.0 / world_size) return tensors @functools.lru_cache() def _get_global_gloo_group(): """ Return a process group based on gloo backend, containing all the ranks The result is cached. Returns: (group): pytorch dist group. """ if dist.get_backend() == "nccl": return dist.new_group(backend="gloo") else: return dist.group.WORLD def all_gather_unaligned(data, group=None): """ Run all_gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: list of data gathered from each rank """ if get_world_size() == 1: return [data] if group is None: group = _get_global_gloo_group() if dist.get_world_size(group) == 1: return [data] tensor = _serialize_to_tensor(data, group) size_list, tensor = _pad_to_largest_tensor(tensor, group) max_size = max(size_list) # receiving Tensor from all ranks tensor_list = [ torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list ] dist.all_gather(tensor_list, tensor, group=group) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list