import csv import pickle import json import cv2 import yaml import numpy as np from pathlib import Path import torch import open3d from plyfile import PlyData def make_dir(dir_path): if not Path(dir_path).exists(): Path(dir_path).mkdir(parents=True, exist_ok=True) def load_imgs(img_paths, option=cv2.IMREAD_COLOR): imgs = [cv2.imread(img_path, option) for img_path in img_paths] return imgs def load_pickle(filename): with Path(filename).open("rb") as f: return pickle.load(f) def save_pickle(data, filename): with Path(filename).open("wb") as f: pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) def load_json(filename): with Path(filename).open("rb") as f: return json.load(f) def save_json(data, filename, save_pretty=True, sort_keys=False): with Path(filename).open("w") as f: if save_pretty: f.write(json.dumps(data, indent=4, sort_keys=sort_keys)) else: json.dump(data, f) def load_jsonl(filename): with Path(filename).open("r") as f: return [json.loads(l.strip("\n")) for l in f.readlines()] def save_jsonl(data, filename): with Path(filename).open("w") as f: f.write("\n".join([json.dumps(e) for e in data])) def load_yaml(filename): with Path(filename).open("r") as f: return yaml.load(f, Loader=yaml.SafeLoader) def save_yaml(data, filename): with Path(filename).open("w") as f: yaml.dump(data, f, default_flow_style=False) def load_csv(filename, delimiter=","): idx2key = None contents = {} with Path(filename).open("r") as f: reader = csv.reader(f, delimiter=delimiter) for l_idx, row in reader: if l_idx == 0: idx2key = row for k_idx, key in enumerate(idx2key): contents[key] = [] else: for c_idx, col in enumerate(row): contents[idx2key[c_idx]].append(col) return contents, idx2key def save_csv(data, filename, cols=None, delimiter=","): with Path(filename).open("w") as f: writer = csv.writer(f, delimiter=delimiter) num_entries = len(data[list(data.keys())[0]]) assert cols is not None, "Must have column names for dumping csv files." writer.writerow(cols) for l_idx in range(num_entries): row = [data[key][l_idx] for key in cols] writer.writerow(row) def load_numpy(filename): return np.load(filename, allow_pickle=True) def save_numpy(data, filename): np.save(filename, data, allow_pickle=True) def load_tensor(filename): return torch.load(filename) def save_tensor(data, filename): torch.save(data, filename) def load_ply(filepath): with open(filepath, "rb") as f: plydata = PlyData.read(f) data = plydata.elements[0].data coords = np.array([data["x"], data["y"], data["z"]], dtype=np.float32).T feats = None labels = None if ({"red", "green", "blue"} - set(data.dtype.names)) == set(): feats = np.array([data["red"], data["green"], data["blue"]], dtype=np.uint8).T if "label" in data.dtype.names: labels = np.array(data["label"], dtype=np.uint32) return coords, feats, labels def load_ply_with_normals(filepath): mesh = open3d.io.read_triangle_mesh(str(filepath)) if not mesh.has_vertex_normals(): mesh.compute_vertex_normals() vertices = np.asarray(mesh.vertices) normals = np.asarray(mesh.vertex_normals) coords, feats, labels = load_ply(filepath) assert np.allclose(coords, vertices), "different coordinates" feats = np.hstack((feats, normals)) return coords, feats, labels