import os import glob import importlib import functools import torch from typing import Any from accelerate.logging import get_logger from accelerate.state import PartialState from accelerate.utils import recursively_apply from accelerate.utils.constants import TORCH_DISTRIBUTED_OPERATION_TYPES from accelerate.utils.dataclasses import DistributedType logger = get_logger(__name__) def rsetattr(obj, attr, val): pre, _, post = attr.rpartition('.') return setattr(rgetattr(obj, pre) if pre else obj, post, val) # using wonder's beautiful simplification: https://stackoverflow.com/questions/31174295/getattr-and-setattr-on-nested-objects/31174427?noredirect=1#comment86638618_31174427 def rgetattr(obj, attr, *args): def _getattr(obj, attr): return getattr(obj, attr, *args) return functools.reduce(_getattr, [obj] + attr.split('.')) # def import_all(exclude_list=None): # if exclude_list is None: # exclude_list = ["__init__.py", "build.py"] # print(f"file: {__file__}") # current_directory = os.path.dirname(__file__) # module_names = [ # os.path.splitext(file)[0] for file in os.listdir(current_directory) # if file.endswith(".py") and file not in exclude_list # ] # for module_name in module_names: # module = importlib.import_module(f".{module_name}", package=__name__) # globals().update({name: getattr(module, name) for name in getattr(module, '__all__', [])}) # __all__ = [name for name in globals() if not name.startswith("_")] def _gpu_gather_object(object: Any): # by JY Huang: re-implement the method for gathering non-tensor objects output_objects = [None for _ in range(PartialState().num_processes)] torch.distributed.all_gather_object(output_objects, object) if isinstance(object, (list, tuple)): output_list = [] for item in output_objects: output_list.extend(item) return output_list elif isinstance(object, dict): template = output_objects[0] output_dict = {} for k, v in template.items(): output_dict[k] = [] for item in output_objects: if isinstance(item[k], list): output_dict[k].extend(item[k]) else: output_dict[k].append(item[k]) return output_dict def gather_object(object: Any): """ Recursively gather object in a nested list/tuple/dictionary of objects from all devices. Args: object (nested list/tuple/dictionary of picklable object): The data to gather. Returns: The same data structure as `object` with all the objects sent to every device. """ if "tpu" in str(PartialState().distributed_type).lower(): raise NotImplementedError("gather objects in TPU is not supported") elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES: return _gpu_gather_object(object) else: return object def gather_for_metrics(accelerator, input_data): """ by JY Huang: re-implement this method for gathering non-tensor objects Refer source code to https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.gather_for_metrics """ try: recursively_apply(lambda x: x, input_data, error_on_other_type=True) all_tensors = True except TypeError: all_tensors = False if not all_tensors: data = gather_object(input_data) else: data = accelerator.gather(input_data) try: if accelerator.gradient_state.end_of_dataloader: # at the end of a dataloader, `gather_for_metrics` regresses to # `gather` unless the dataset has a remainder so log. if accelerator.gradient_state.remainder == -1: logger.info( "The used dataset had no length, returning gathered tensors. You should drop the remainder yourself." ) return data elif accelerator.gradient_state.remainder > 0: # Last batch needs to be truncated on distributed systems as it contains additional samples def _adjust_samples(tensor): return tensor[: accelerator.gradient_state.remainder] if tensor is not None else None if all_tensors: # This only applies to tensors, as defined in `recursively_apply` return recursively_apply(_adjust_samples, data) else: if isinstance(data, (list, tuple)): return _adjust_samples(data) elif isinstance(data, dict): return {k: _adjust_samples(v) for k, v in data.items()} else: raise NotImplementedError(f"Non-tensor gather only supports list, tuple or dict") else: # remainder is 0 # no remainder even though at end of dataloader, so nothing to do. return data else: # Not at the end of the dataloader, no need to adjust the tensors return data except Exception: # Dataset had no length or raised an error return data def gather_dict(accelerator, data_dict): data_dict_non_tensor = {k : v for k, v in data_dict.items() if not isinstance(v, torch.Tensor)} data_dict_non_tensor = gather_for_metrics(accelerator, data_dict_non_tensor) data_dict = {k : v for k, v in data_dict.items() if isinstance(v, torch.Tensor)} data_dict = gather_for_metrics(accelerator, data_dict) data_dict.update(data_dict_non_tensor) return data_dict