from omegaconf import OmegaConf from torch.utils.data import DataLoader, default_collate, ConcatDataset from fvcore.common.registry import Registry from .datasets.dataset_wrapper import DATASETWRAPPER_REGISTRY DATASET_REGISTRY = Registry("dataset") DATASET_REGISTRY.__doc__ = """ Registry for datasets, which takes a list of dataset names and returns a dataset object. Currently it performs similar as registering dataset loading functions, but remains in a form of object class for future purposes. """ def get_dataset(cfg, split): assert cfg.data.get(split), f"No valid dataset name in {split}." dataset_list = [] print(split, ': ', ', '.join(cfg.data.get(split))) for dataset_name in cfg.data.get(split): _dataset = DATASET_REGISTRY.get(dataset_name)(cfg, split) assert len(_dataset), f"Dataset '{dataset_name}' is empty!" wrapper = cfg.data_wrapper.get(split, cfg.data_wrapper) if not isinstance(cfg.data_wrapper, str) else cfg.data_wrapper _dataset = DATASETWRAPPER_REGISTRY.get(wrapper)(cfg, _dataset, split=split) # Conduct voxelization # TODO: fix voxel config if cfg.data.get('use_voxel', None): _dataset = DATASETWRAPPER_REGISTRY.get('VoxelDatasetWrapper')(cfg, _dataset) dataset_list.append(_dataset) print('='*50) print('Dataset\t\t\tSize') total = sum([len(dataset) for dataset in dataset_list]) for dataset_name, dataset in zip(cfg.data.get(split), dataset_list): print(f'{dataset_name:<20} {len(dataset):>6} ({len(dataset) / total * 100:.1f}%)') print(f'Total\t\t\t{total}') print('='*50) if split in ['warmup', 'pretrain', 'train']: dataset_list = ConcatDataset(dataset_list) return dataset_list def build_dataloader(cfg, split='train'): """_summary_ Unittest: dataloader_train = build_dataloader(default_cfg, split='train') for _item in dataloader_train: print(_item.keys()) Args: cfg (_type_): _description_ split (str, optional): _description_. Defaults to 'train'. Returns: _type_: _description_ """ if split in ['warmup','pretrain']: dataset= get_dataset(cfg, split) collate_fn = getattr(dataset.datasets[0], 'collate_fn', default_collate) return DataLoader(dataset, batch_size=cfg.dataloader.batchsize, num_workers=cfg.dataloader.num_workers, collate_fn = collate_fn, pin_memory=True, # TODO: Test speed persistent_workers = False, shuffle=True, drop_last=True) else: loader_list = [] collate_fn = default_collate if split == 'train': dataset = get_dataset(cfg, split) return DataLoader(dataset, batch_size=cfg.dataloader.get('batchsize_eval', cfg.dataloader.batchsize), num_workers=8, collate_fn = collate_fn, pin_memory=True, # TODO: Test speed persistent_workers = True, drop_last=True, prefetch_factor=4, shuffle=True) else: for dataset in get_dataset(cfg, split): loader_list.append( DataLoader(dataset, batch_size=cfg.dataloader.get('batchsize_eval', cfg.dataloader.batchsize), num_workers=8, collate_fn = collate_fn, pin_memory=True, # TODO: Test speed shuffle=False, prefetch_factor=4, persistent_workers = True)) # TODO: temporary solution for backward compatibility. if len(loader_list) == 1: return loader_list[0] else: return loader_list if __name__ == '__main__': pass