import random import csv from collections import Counter import re import numpy as np import torch from data.datasets.constant import VALID_CLASS_IDS_200 from safetensors.torch import load_file from safetensors.torch import load from huggingface_hub import hf_hub_download _MEAN = (0.48145466, 0.4578275, 0.40821073) _STD = (0.26862954, 0.26130258, 0.27577711) MEAN = torch.tensor(_MEAN, dtype=torch.float32).view(1, 3, 1, 1) STD = torch.tensor(_STD, dtype=torch.float32).view(1, 3, 1, 1) def normalize_images(images: torch.Tensor): # images: [N,3,H,W] uint8 or float if images.dtype == torch.uint8: images = images.float().div_(255.0) else: images = images.float() return images.sub_(MEAN).div_(STD) def load_safetensor_from_hf(repo_id, filename, repo_type="dataset"): if filename.startswith('lsun'): filename = '/home/m50048399/transfered/ye_project/Project2/' + filename with open(filename, "rb") as f: return load(f.read()) else: cached_path = hf_hub_download( repo_id=repo_id, filename=filename, repo_type=repo_type, local_files_only=True ) return load_file(cached_path) def per_scene_pad(lang_list, max_len=64, tokenizer=None, max_seq_len=50): """ @param lang_list: lang json for all sentences, must include scan_id in the json element @param max_len: the number for padding, default is 64 @return: a list of list, with each element in the list containing max_len number of sentences corresponding to one scene """ scene_list = {} if tokenizer is not None: for key in ["utterance", "question", "description"]: if key in lang_list[0].keys(): encoded_input = tokenizer( [item[key] for item in lang_list], padding="max_length", truncation=True, max_length=max_seq_len ) lang_list = [ { k : (v, encoded_input["input_ids"][idx], encoded_input["attention_mask"][idx]) if k == key else v for k, v in item.items() } for idx, item in enumerate(lang_list) ] for item in lang_list: scan_id = item["scan_id"] if scan_id not in scene_list.keys(): scene_list[scan_id] = [item] else: scene_list[scan_id].append(item) final_list = [] for key, value in scene_list.items(): for index in range(0, len(value), max_len): if index + max_len < len(value): final_list.append(value[index:index + max_len]) else: content = value[index:] sampled = random.choices(content, k=max_len) final_list.append(sampled) return final_list def merge_tokens(token1, mask1, token2, mask2, max_len=300, tokenizer=None): assert len(token1) > len(token2), "not appendable" assert tokenizer is not None, "should pass in a tokenizer" len_token1 = sum(mask1) - 1 # remove the last [CLS] len_token2 = sum(mask2) - 1 # remove the first [BOS] insert_length = min(max_len - len_token1, len_token2) token1[len_token1: len_token1 + insert_length] = token2[1: 1 + insert_length] mask1[len_token1: len_token1 + insert_length] = mask2[1: 1 + insert_length] if token1[sum(mask1) - 1] != tokenizer.sep_token_id: token1[sum(mask1) - 1] = tokenizer.sep_token_id return token1, mask1 def convert_pc_to_box(obj_pc): xmin = np.min(obj_pc[:,0]) ymin = np.min(obj_pc[:,1]) zmin = np.min(obj_pc[:,2]) xmax = np.max(obj_pc[:,0]) ymax = np.max(obj_pc[:,1]) zmax = np.max(obj_pc[:,2]) center = [(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2] box_size = [xmax-xmin, ymax-ymin, zmax-zmin] return center, box_size # input txt_ids, txt_masks def random_word(tokens, tokens_mask, tokenizer, mask_ratio): output_label = [] output_tokens = tokens.clone() for i, token in enumerate(tokens): if tokens_mask[i] == 0: output_label.append(-1) else: prob = random.random() # mask token with 15% probability if prob < mask_ratio: prob /= mask_ratio # 80% randomly change token to mask token if prob < 0.8: output_tokens[i] = tokenizer.mask_token_id # 10% randomly change token to random token elif prob < 0.9: output_tokens[i] = random.choice(list(tokenizer.vocab.items()))[1] # -> rest 10% randomly keep current token # append current token to output (we will predict these later) output_label.append(token.item()) else: # no masking token (will be ignored by loss function later) output_label.append(-1) output_label = torch.Tensor(output_label).long() return output_tokens, output_label def random_point_cloud(pcd, pcd_mask, mask_ratio): assert len(pcd) == len(pcd_mask) output_mask = [] for i in range(len(pcd)): if pcd_mask[i] == 0: output_mask.append(0) else: prob = random.random() if prob < mask_ratio: output_mask.append(0) else: output_mask.append(1) output_mask = torch.tensor(output_mask, dtype=torch.bool) return output_mask class LabelConverter(object): def __init__(self, file_path): self.raw_name_to_id = {} self.nyu40id_to_id = {} self.nyu40_name_to_id = {} self.scannet_name_to_scannet_id = {'cabinet':0, 'bed':1, 'chair':2, 'sofa':3, 'table':4, 'door':5, 'window':6,'bookshelf':7,'picture':8, 'counter':9, 'desk':10, 'curtain':11, 'refrigerator':12, 'shower curtain':13, 'toilet':14, 'sink':15, 'bathtub':16, 'others':17} self.id_to_scannetid = {} self.scannet_raw_id_to_raw_name = {} with open(file_path, encoding='utf-8') as fd: rd = list(csv.reader(fd, delimiter="\t", quotechar='"')) for i in range(1, len(rd)): raw_id = i - 1 scannet_raw_id = int(rd[i][0]) raw_name = rd[i][1] nyu40_id = int(rd[i][4]) nyu40_name = rd[i][7] self.raw_name_to_id[raw_name] = raw_id self.scannet_raw_id_to_raw_name[scannet_raw_id] = raw_name self.nyu40id_to_id[nyu40_id] = raw_id self.nyu40_name_to_id[nyu40_name] = raw_id if nyu40_name not in self.scannet_name_to_scannet_id: self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id['others'] else: self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id[nyu40_name] ### add instance id from org image to pth file self.orgInstID_to_id = {id : id - 1 for id in range(1, 257)} self.orgInstID_to_id[0] = -100 # add map for scannet 200 self.scannet_raw_id_to_scannet200_id = {} self.scannet200_id_to_scannet_raw_id = {} for v, k in enumerate(VALID_CLASS_IDS_200): self.scannet_raw_id_to_scannet200_id[k] = v self.scannet200_id_to_scannet_raw_id[v] = k def build_rotate_mat(split, rot_aug=True, rand_angle='axis'): if rand_angle == 'random': theta = np.random.rand() * np.pi * 2 else: ROTATE_ANGLES = [0, np.pi/2, np.pi, np.pi*3/2] theta_idx = np.random.randint(len(ROTATE_ANGLES)) theta = ROTATE_ANGLES[theta_idx] if (theta is not None) and (theta != 0) and (split == 'train') and rot_aug: rot_matrix = np.array([ [np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1] ], dtype=np.float32) else: rot_matrix = None return rot_matrix def eval_ref_one_sample(pred_bbox, gt_bbox): """ Evaluate one reference prediction Args: pred_bbox: 8 corners of prediction bounding box, (8, 3) gt_bbox: 8 corners of ground truth bounding box, (8, 3) Returns: iou: intersection over union score """ iou = box3d_iou(pred_bbox, gt_bbox) return iou def get_box3d_min_max(corner): ''' Compute min and max coordinates for 3D bounding box Note: only for axis-aligned bounding boxes Input: corners: numpy array (8,3), assume up direction is Z (batch of N samples) Output: box_min_max: an array for min and max coordinates of 3D bounding box IoU ''' min_coord = corner.min(axis=0) max_coord = corner.max(axis=0) x_min, x_max = min_coord[0], max_coord[0] y_min, y_max = min_coord[1], max_coord[1] z_min, z_max = min_coord[2], max_coord[2] return x_min, x_max, y_min, y_max, z_min, z_max def box3d_iou(corners1, corners2): ''' Compute 3D bounding box IoU. Input: corners1: numpy array (8,3), assume up direction is Z corners2: numpy array (8,3), assume up direction is Z Output: iou: 3D bounding box IoU ''' x_min_1, x_max_1, y_min_1, y_max_1, z_min_1, z_max_1 = get_box3d_min_max(corners1) x_min_2, x_max_2, y_min_2, y_max_2, z_min_2, z_max_2 = get_box3d_min_max(corners2) xA = np.maximum(x_min_1, x_min_2) yA = np.maximum(y_min_1, y_min_2) zA = np.maximum(z_min_1, z_min_2) xB = np.minimum(x_max_1, x_max_2) yB = np.minimum(y_max_1, y_max_2) zB = np.minimum(z_max_1, z_max_2) inter_vol = np.maximum((xB - xA), 0) * np.maximum((yB - yA), 0) * np.maximum((zB - zA), 0) box_vol_1 = (x_max_1 - x_min_1) * (y_max_1 - y_min_1) * (z_max_1 - z_min_1) box_vol_2 = (x_max_2 - x_min_2) * (y_max_2 - y_min_2) * (z_max_2 - z_min_2) iou = inter_vol / (box_vol_1 + box_vol_2 - inter_vol + 1e-8) return iou def transform_points(points, transform, translate=True, mode="numpy"): """ Apply linear transform to a np array of points. Args: points (np array [..., 3]): Points to transform. transform (np array [3, 4] or [4, 4]): Linear map. translate (bool): If false, do not apply translation component of transform. Returns: transformed points (np array [..., 3]) """ # Append ones or zeros to get homogenous coordinates if translate: if mode == "numpy": constant_term = np.ones_like(points[..., :1]) else: constant_term = torch.ones_like(points[..., :1]) else: if mode == "numpy": constant_term = np.zeros_like(points[..., :1]) else: constant_term = torch.zeros_like(points[..., :1]) if mode == "numpy": points = np.concatenate((points, constant_term), axis=-1) points = np.einsum('nm,...m->...n', transform, points) else: points = torch.cat((points, constant_term), dim=-1) points = torch.einsum('...nm,...m->...n', transform, points) return points[..., :3] def construct_bbox_corners(center, box_size): sx, sy, sz = box_size x_corners = [sx/2, sx/2, -sx/2, -sx/2, sx/2, sx/2, -sx/2, -sx/2] y_corners = [sy/2, -sy/2, -sy/2, sy/2, sy/2, -sy/2, -sy/2, sy/2] z_corners = [sz/2, sz/2, sz/2, sz/2, -sz/2, -sz/2, -sz/2, -sz/2] corners_3d = np.vstack([x_corners, y_corners, z_corners]) corners_3d[0,:] = corners_3d[0,:] + center[0] corners_3d[1,:] = corners_3d[1,:] + center[1] corners_3d[2,:] = corners_3d[2,:] + center[2] corners_3d = np.transpose(corners_3d) return corners_3d def is_explicitly_view_dependent(tokens): """ :return: a boolean mask """ target_words = {'front', 'behind', 'back', 'right', 'left', 'facing', 'leftmost', 'rightmost', 'looking', 'across'} for token in tokens: if token in target_words: return True return False class ScanQAAnswer(object): def __init__(self, answers=None, unk_token='', ignore_idx=-100): if answers is None: answers = [] self.unk_token = unk_token self.ignore_idx = ignore_idx self.vocab = {x: i for i, x in enumerate(answers)} with open("answer_dict.txt", "w", encoding="utf-8") as f: for ans, idx in self.vocab.items(): f.write(f"{idx}\t{ans}\n") self.rev_vocab = dict((v, k) for k, v in self.vocab.items()) def itos(self, i): if i == self.ignore_idx: return self.unk_token return self.rev_vocab[i] def stoi(self, v): if v not in self.vocab: return self.ignore_idx return self.vocab[v] def __len__(self): return len(self.vocab) class Hypo3DAnswer(object): def __init__(self, answers=None): if answers is None: answers = [] self.vocab = {x: i for i, x in enumerate(answers)} self.rev_vocab = dict((v, k) for k, v in self.vocab.items()) def itos(self, i): return self.rev_vocab[i] def stoi(self, v): return self.vocab[v] def __len__(self): return len(self.vocab) class msnnAnswer(object): def __init__(self, answers=None): if answers is None: answers = [] self.vocab = {x: i for i, x in enumerate(answers)} self.rev_vocab = dict((v, k) for k, v in self.vocab.items()) def itos(self, i): return self.rev_vocab[i] def stoi(self, v): return self.vocab[v] def __len__(self): return len(self.vocab) class SQA3DAnswer(object): def __init__(self, answers=None, unk_token='u'): if answers is None: answers = [] self.vocab = {x: i for i, x in enumerate(answers)} self.rev_vocab = dict((v, k) for k, v in self.vocab.items()) self.unk_token = unk_token self.ignore_idx = self.vocab['u'] def itos(self, i): if i == self.ignore_idx: return self.unk_token return self.rev_vocab[i] def stoi(self, v): if v not in self.vocab: return self.ignore_idx return self.vocab[v] def __len__(self): return len(self.vocab) class MSQAAnswer(object): def __init__(self, answers=None, unk_token='u'): if answers is None: answers = [] self.vocab = {x: i for i, x in enumerate(answers)} self.rev_vocab = dict((v, k) for k, v in self.vocab.items()) # self.unk_token = unk_token # self.ignore_idx = self.vocab['u'] def itos(self, i): # if i == self.ignore_idx: # return self.unk_token return self.rev_vocab[i].strip() def stoi(self, v): # if v not in self.vocab: # return self.ignore_idx return self.vocab[v.strip()] def __len__(self): return len(self.vocab) def load_matrix_from_txt(path, shape=(4, 4)): with open(path) as f: txt = f.readlines() txt = ''.join(txt).replace('\n', ' ') matrix = [float(v) for v in txt.split()] return np.array(matrix).reshape(shape) def pad_tensors(tensors, lens=None, pad=0): assert tensors.shape[0] <= lens if tensors.shape[0] == lens: return tensors shape = list(tensors.shape) shape[0] = lens - shape[0] res = torch.ones(shape, dtype=tensors.dtype) * pad res = torch.cat((tensors, res), dim=0) return res def get_sqa_question_type(question): question = question.lstrip() if question[:4].lower() == 'what': return 0 elif question[:2].lower() == 'is': return 1 elif question[:3].lower() == 'how': return 2 elif question[:3].lower() == 'can': return 3 elif question[:5].lower() == 'which': return 4 else: return 5 # others def get_hypo_question_type(question): question = question.lstrip() if question[:4].lower() == 'what': return 0 elif question[:2].lower() == 'is': return 1 elif question[:3].lower() == 'how': return 2 elif question[:3].lower() == 'can': return 3 elif question[:5].lower() == 'which': return 4 else: return 5 # others class Vocabulary(object): def __init__(self, path=None): self.vocab = {} self.id_to_vocab = {} self.id_to_bert = {} if path is not None: load_dict = torch.load(path) self.vocab = load_dict['vocab'] self.id_to_vocab = load_dict['id_to_vocab'] self.id_to_bert = load_dict['id_to_bert'] def add_token(self, token, bert_id): if token in self.vocab.keys(): return id = len(self.vocab) self.vocab[token] = id self.id_to_vocab[id] = token self.id_to_bert[id] = bert_id def token_to_id(self, token): return self.vocab[token] def id_to_token(self, id): return self.id_to_vocab[id] def id_to_bert_id(self, id): return self.id_to_bert[id] def save_vocab(self, path): save_dict = {'vocab': self.vocab, "id_to_vocab": self.id_to_vocab, "id_to_bert": self.id_to_bert} torch.save(save_dict, path) def random_caption_word(tokens, tokens_mask, tokenizer, vocab, mask_ratio): output_label = [] output_tokens = tokens.clone() for i, token in enumerate(tokens): # 101 cls 102 sep use them as SOS and EOS token if tokens_mask[i] == 0 or token == 101: output_label.append(-1) elif token == 102: output_tokens[i] = tokenizer.mask_token_id output_label.append(vocab.token_to_id('[EOS]')) else: prob = random.random() # mask token with 15% probability if prob < mask_ratio: output_tokens[i] = tokenizer.mask_token_id output_label.append(vocab.token_to_id(tokenizer.decode([tokens[i]]))) else: # no masking token (will be ignored by loss function later) output_label.append(-1) output_label = torch.Tensor(output_label).long() return output_tokens, output_label def clean_answer(data): data = data.lower() data = re.sub('[ ]+$' ,'', data) data = re.sub('^[ ]+' ,'', data) data = re.sub(' {2,}', ' ', data) data = re.sub('\.[ ]{2,}', '. ', data) data = re.sub('[^a-zA-Z0-9,\'\s\-:]+', '', data) data = re.sub('ç' ,'c', data) data = re.sub('’' ,'\'', data) data = re.sub(r'\bletf\b' ,'left', data) data = re.sub(r'\blet\b' ,'left', data) data = re.sub(r'\btehre\b' ,'there', data) data = re.sub(r'\brigth\b' ,'right', data) data = re.sub(r'\brght\b' ,'right', data) data = re.sub(r'\bbehine\b', 'behind', data) data = re.sub(r'\btv\b' ,'TV', data) data = re.sub(r'\bchai\b' ,'chair', data) data = re.sub(r'\bwasing\b' ,'washing', data) data = re.sub(r'\bwaslked\b' ,'walked', data) data = re.sub(r'\boclock\b' ,'o\'clock', data) data = re.sub(r'\bo\'[ ]+clock\b' ,'o\'clock', data) # digit to word, only for answer data = re.sub(r'\b0\b', 'zero', data) data = re.sub(r'\bnone\b', 'zero', data) data = re.sub(r'\b1\b', 'one', data) data = re.sub(r'\b2\b', 'two', data) data = re.sub(r'\b3\b', 'three', data) data = re.sub(r'\b4\b', 'four', data) data = re.sub(r'\b5\b', 'five', data) data = re.sub(r'\b6\b', 'six', data) data = re.sub(r'\b7\b', 'seven', data) data = re.sub(r'\b8\b', 'eight', data) data = re.sub(r'\b9\b', 'nine', data) data = re.sub(r'\b10\b', 'ten', data) data = re.sub(r'\b11\b', 'eleven', data) data = re.sub(r'\b12\b', 'twelve', data) data = re.sub(r'\b13\b', 'thirteen', data) data = re.sub(r'\b14\b', 'fourteen', data) data = re.sub(r'\b15\b', 'fifteen', data) data = re.sub(r'\b16\b', 'sixteen', data) data = re.sub(r'\b17\b', 'seventeen', data) data = re.sub(r'\b18\b', 'eighteen', data) data = re.sub(r'\b19\b', 'nineteen', data) data = re.sub(r'\b20\b', 'twenty', data) data = re.sub(r'\b23\b', 'twenty-three', data) # misc # no1, mat2, etc data = re.sub(r'\b([a-zA-Z]+)([0-9])\b' ,r'\g<1>', data) data = re.sub(r'\ba\b ([a-zA-Z]+)' ,r'\g<1>', data) data = re.sub(r'\ban\b ([a-zA-Z]+)' ,r'\g<1>', data) data = re.sub(r'\bthe\b ([a-zA-Z]+)' ,r'\g<1>', data) data = re.sub(r'\bbackwards\b', 'backward', data) return data if __name__ == "__main__": path = "/home/baoxiong/Desktop/gpt_gen_language.json" import json with open(path, "r") as f: data = json.load(f) padded = per_scene_pad(data) print(padded)