# ================================ # Point Cloud Augmentation Functions (Single + Batched) # ================================ import torch import math # ------------------------------- # Center the point cloud # ------------------------------- def center_point_cloud(points: torch.Tensor): """ Center a point cloud by subtracting its centroid. Args: points: (N, 3) or (B, N, 3) tensor Returns: centered_points: same shape as input center: (1, 3) if input was (N, 3) (B, 1, 3) if input was (B, N, 3) """ assert points.dim() in (2, 3) and points.size(-1) == 3, \ "Expected shape (N,3) or (B,N,3)" if points.dim() == 2: # (N,3) center = points.mean(dim=0, keepdim=True) # (1,3) centered = points - center # (N,3) else: # (B,N,3) center = points.mean(dim=1, keepdim=True) # (B,1,3) centered = points - center # (B,N,3) return centered, center # ------------------------------- # Random rotation helpers # ------------------------------- def random_rotation_matrix( batch_size: int | None = None, device=None, dtype=torch.float32, ): """ Generate random 3D rotation matrix/matrices. If batch_size is None: returns (3, 3) rotation matrix. Else: returns (B, 3, 3) rotation matrices. Uniform sampling over SO(3) using independent yaw-pitch-roll. (Not perfectly uniform on SO(3) but good enough for augmentation.) """ if device is None: device = torch.device("cpu") if batch_size is None: angles = torch.rand(3, device=device, dtype=dtype) * 2 * math.pi # (3,) cx, cy, cz = torch.cos(angles) sx, sy, sz = torch.sin(angles) rot_x = torch.tensor([ [1, 0, 0], [0, cx, -sx], [0, sx, cx], ], device=device, dtype=dtype) rot_y = torch.tensor([ [ cy, 0, sy], [ 0, 1, 0], [-sy, 0, cy], ], device=device, dtype=dtype) rot_z = torch.tensor([ [cz, -sz, 0], [sz, cz, 0], [ 0, 0, 1], ], device=device, dtype=dtype) R = rot_z @ rot_y @ rot_x # (3,3) return R else: # batch of rotations angles = torch.rand(batch_size, 3, device=device, dtype=dtype) * 2 * math.pi # (B,3) cx, cy, cz = torch.cos(angles[:, 0]), torch.cos(angles[:, 1]), torch.cos(angles[:, 2]) sx, sy, sz = torch.sin(angles[:, 0]), torch.sin(angles[:, 1]), torch.sin(angles[:, 2]) # build batched rotation matrices R = torch.zeros(batch_size, 3, 3, device=device, dtype=dtype) # RotX R_x = torch.zeros_like(R) R_x[:, 0, 0] = 1 R_x[:, 1, 1] = cx R_x[:, 1, 2] = -sx R_x[:, 2, 1] = sx R_x[:, 2, 2] = cx # RotY R_y = torch.zeros_like(R) R_y[:, 0, 0] = cy R_y[:, 0, 2] = sy R_y[:, 1, 1] = 1 R_y[:, 2, 0] = -sy R_y[:, 2, 2] = cy # RotZ R_z = torch.zeros_like(R) R_z[:, 0, 0] = cz R_z[:, 0, 1] = -sz R_z[:, 1, 0] = sz R_z[:, 1, 1] = cz R_z[:, 2, 2] = 1 # Z * Y * X, batched # (B,3,3) @ (B,3,3) -> (B,3,3) R = torch.bmm(R_z, torch.bmm(R_y, R_x)) return R # ------------------------------- # Full 3D rotation # ------------------------------- def rotate_point_cloud(points: torch.Tensor, R: torch.Tensor = None): """ Rotate a point cloud with optional rotation matrix. Args: points: (N,3) or (B,N,3) R: If points is (N,3): None or (3,3) If points is (B,N,3): None, (3,3) shared, or (B,3,3) per-cloud. Returns: rotated_points: same shape as points R: (3,3) or (B,3,3) rotation used """ assert points.dim() in (2, 3) and points.size(-1) == 3, \ "Expected shape (N,3) or (B,N,3)" device, dtype = points.device, points.dtype if points.dim() == 2: # (N,3) if R is None: R = random_rotation_matrix(device=device, dtype=dtype) # (3,3) assert R.shape == (3, 3), "R must be (3,3) for single cloud" rotated = points @ R.T # (N,3) return rotated, R else: # (B,N,3) B, N, _ = points.shape if R is None: R = random_rotation_matrix(batch_size=B, device=device, dtype=dtype) # (B,3,3) elif R.dim() == 2: # broadcast shared rotation to all clouds assert R.shape == (3, 3), "R must be (3,3) or (B,3,3)" R = R.unsqueeze(0).expand(B, -1, -1) # (B,3,3) else: assert R.shape == (B, 3, 3), "R must be (3,3) or (B,3,3)" # rotated[b, n, :] = points[b, n, :] @ R[b].T rotated = torch.einsum("bnc,bfc->bnf", points, R.transpose(1, 2)) # (B,N,3) return rotated, R # ------------------------------- # Rotation around z-axis only # ------------------------------- def rotate_point_cloud_z(points: torch.Tensor, angle=None): """ Rotate point cloud around z-axis only. Args: points: (N,3) or (B,N,3) angle: If points is (N,3): float or None (radians). - None: sample random in [0, 2π). If points is (B,N,3): tensor of shape (B,) or None. - None: random angle per cloud in [0, 2π). Returns: rotated_points: same shape as points Rz: (3,3) for single cloud (B,3,3) for batched """ assert points.dim() in (2, 3) and points.size(-1) == 3, \ "Expected shape (N,3) or (B,N,3)" device, dtype = points.device, points.dtype if points.dim() == 2: # single cloud (N,3) if angle is None: angle = torch.rand(1, device=device, dtype=dtype).item() * 2 * math.pi c, s = math.cos(angle), math.sin(angle) Rz = torch.tensor([ [c, -s, 0], [s, c, 0], [0, 0, 1], ], device=device, dtype=dtype) rotated = points @ Rz.T # (N,3) return rotated, Rz else: # batched (B,N,3) B, N, _ = points.shape if angle is None: angle = torch.rand(B, device=device, dtype=dtype) * 2 * math.pi # (B,) elif not torch.is_tensor(angle): # scalar -> shared angle angle = torch.full((B,), float(angle), device=device, dtype=dtype) c = torch.cos(angle) # (B,) s = torch.sin(angle) # (B,) Rz = torch.zeros(B, 3, 3, device=device, dtype=dtype) Rz[:, 0, 0] = c Rz[:, 0, 1] = -s Rz[:, 1, 0] = s Rz[:, 1, 1] = c Rz[:, 2, 2] = 1 rotated = torch.einsum("bnc,bfc->bnf", points, Rz.transpose(1, 2)) # (B,N,3) return rotated, Rz # ------------------------------- # Translation # ------------------------------- def translate_point_cloud(points: torch.Tensor, t: torch.Tensor = None, scale: float = 0.05): """ Translate a point cloud. Args: points: (N,3) or (B,N,3) t: Translation vector. For (N,3): None, (3,), or (1,3). For (B,N,3): None, (3,), (1,3), or (B,3). scale: Magnitude for random translation when t is None. Returns: translated_points: same shape as points t_out: (1,3) for single cloud (B,1,3) for batched clouds """ assert points.dim() in (2, 3) and points.size(-1) == 3, \ "Expected shape (N,3) or (B,N,3)" device, dtype = points.device, points.dtype if points.dim() == 2: # (N,3) if t is None: t = (torch.rand(1, 3, device=device, dtype=dtype) * 2 - 1) * scale # (1,3) t = t.view(1, 3) translated = points + t # (N,3) return translated, t else: # (B,N,3) B, N, _ = points.shape if t is None: t = (torch.rand(B, 3, device=device, dtype=dtype) * 2 - 1) * scale # (B,3) else: if t.dim() == 1: assert t.shape[0] == 3, "t must be (3,), (1,3), or (B,3)" t = t.view(1, 3).expand(B, -1) # (B,3) elif t.dim() == 2: if t.shape[0] == 1: # (1,3) -> broadcast t = t.expand(B, -1) # (B,3) else: assert t.shape == (B, 3), "t must be (3,), (1,3), or (B,3)" else: raise ValueError("t must have shape (3,), (1,3), or (B,3)") t_out = t.view(B, 1, 3) # (B,1,3) translated = points + t_out # (B,N,3) return translated, t_out # ------------------------------- # Scaling # ------------------------------- def scale_point_cloud(points: torch.Tensor, s: torch.Tensor = None, min_s: float = 0.9, max_s: float = 1.1): """ Uniformly scale a point cloud. Args: points: (N,3) or (B,N,3) s: If points is (N,3): None or scalar tensor (or shape (1,)) If points is (B,N,3): None, scalar, or (B,) for per-cloud scaling. min_s, max_s: Range for random scaling when s is None. Returns: scaled_points: same shape as points s_vec: (1,3) if single cloud (B,1,3) if batched """ assert points.dim() in (2, 3) and points.size(-1) == 3, \ "Expected shape (N,3) or (B,N,3)" device, dtype = points.device, points.dtype if points.dim() == 2: # (N,3) if s is None: s = torch.empty(1, device=device, dtype=dtype).uniform_(min_s, max_s) # (1,) if torch.is_tensor(s): s = s.view(1, 1) # scalar else: s = torch.tensor([[float(s)]], device=device, dtype=dtype) s_vec = s.repeat(1, 3) # (1,3) scaled = points * s # (N,3) return scaled, s_vec else: # (B,N,3) B, N, _ = points.shape if s is None: s = torch.empty(B, device=device, dtype=dtype).uniform_(min_s, max_s) # (B,) elif not torch.is_tensor(s): s = torch.full((B,), float(s), device=device, dtype=dtype) assert s.shape == (B,), "For batched input, s must be scalar or shape (B,)" s = s.view(B, 1, 1) # (B,1,1) s_vec = s.repeat(1, 1, 3) # (B,1,3) scaled = points * s # (B,N,3) return scaled, s_vec # ------------------------------- # Example: Full augmentation pipeline # ------------------------------- def augment_point_cloud(points: torch.Tensor): """ Example augmentation pipeline: center -> random rotate -> random scale -> random translate Works for: (N,3) or (B,N,3) Returns: aug_points: same shape as input info: dict with keys center, R, s, t center: (1,3) or (B,1,3) R: (3,3) or (B,3,3) s: (1,3) or (B,1,3) t: (1,3) or (B,1,3) """ pts, center = center_point_cloud(points) pts, R = rotate_point_cloud(pts) pts, s = scale_point_cloud(pts, min_s=0.8, max_s=1.2) pts, t = translate_point_cloud(pts, scale=0.1) info = dict(center=center, R=R, s=s, t=t) return pts, info