import torch import torch.nn as nn import json from pathlib import Path import clip from transformers import BertConfig, BertModel, BertTokenizer from einops import rearrange from model.build import MODEL_REGISTRY, BaseModel from modules.layers.pointnet import PointNetPP from modules.utils import get_mlp_head from optim.utils import no_decay_param_group @MODEL_REGISTRY.register() class ObjCls(BaseModel): def __init__(self, cfg): super().__init__(cfg) self.cfg = cfg self.model_name = cfg.model.get("model_name", "pointnext") self.language_type = cfg.model.get("language_type", "clip") self.pre_extract_path = cfg.model.get("pre_extract_path", None) cls_in_channel = 512 if self.language_type == "clip" else 768 self.point_feature_extractor = PointNetPP( sa_n_points=[32, 16, None], sa_n_samples=[32, 32, None], sa_radii=[0.2, 0.4, None], sa_mlps=[[3, 64, 64, 128], [128, 128, 128, 256], [256, 256, 512, cls_in_channel]], ) if cfg.num_gpu > 1: self.point_feature_extractor = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.point_feature_extractor) if not cfg.model.open_vocab: cls_hidden = cfg.model.get("cls_hidden", 1024) num_classes = cfg.model.num_classes self.cls_head = get_mlp_head(cls_in_channel, cls_hidden, num_classes) else: if self.pre_extract_path is not None: file_name = f"scannet_607_{'clip-ViT-B16' if self.language_type == 'clip' else 'bert-base-uncased'}_id.pth" self.register_buffer("text_embeds", torch.load(Path(self.pre_extract_path) / file_name).float()) else: self.int2cat = json.load(open(cfg.model.vocab_path, "r")) if self.language_type == "clip": self.clip_head = clip.load("ViT-B/16") self.text_embeds = self.clip_head.encode_text(clip.tokenize(self.int2cat)).detach() elif self.language_type == "bert": self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True) self.bert_config = BertConfig( hidden_size=768, num_hidden_layers=3, num_attention=12, type_vocab_size=2 ) self.model = BertModel.from_pretrained("bert-base-uncased", config=self.bert_config) self.encoded_input = self.tokenizer( self.int2cat, padding=True, truncation=True, add_special_tokens=True, return_tensors="pt" ) self.text_embeds = self.model(**self.encoded_input).last_hidden_state self.text_embeds = self.text_embeds.detach() else: raise NotImplementedError self.dropout = nn.Dropout(0.1) def forward(self, data_dict): # prepare dict if 'cur_step' not in data_dict.keys(): data_dict['cur_step'] = 1 data_dict['total_steps'] = 1 obj_pcds = data_dict["obj_fts"] batch_size, num_objs, _, _ = obj_pcds.size() if self.model_name == "pointnext": obj_locs = rearrange(obj_pcds[..., :3], 'b o p d -> (b o) p d') obj_fts = rearrange(obj_pcds[..., 3:], 'b o p d -> (b o) d p').contiguous() obj_embeds = self.point_feature_extractor(obj_locs, obj_fts, type="cls") elif self.model_name == "pointnet++": obj_pcds = rearrange(obj_pcds, 'b o p d -> (b o) p d') obj_embeds = self.point_feature_extractor(obj_pcds) elif self.model_name == "pointmlp": obj_pcds = rearrange(obj_pcds, 'b o p d -> (b o) p d') obj_embeds = self.point_feature_extractor(obj_pcds) obj_embeds = self.dropout(obj_embeds) if self.cfg.model.open_vocab: logits = obj_embeds @ self.text_embeds.t() data_dict["obj_logits"] = rearrange(logits, '(b o) c -> b o c', b=batch_size) else: data_dict["obj_logits"] = rearrange(self.cls_head(obj_embeds), '(b o) d -> b o d', b=batch_size) return data_dict def get_opt_params(self): optimizer_grouped_parameters = [] optimizer_grouped_parameters.append({ "params": self.parameters(), "weight_decay": self.cfg.solver.get("weight_decay", 0.0), "lr": self.cfg.solver.lr }) return optimizer_grouped_parameters