import torch def apply_masks(x, masks): """ :param x: [B, N, D] :param masks: [B, 2, Nq], containing indices (int64) to select from N patches :return: [B * 2, Nq, D] """ B, N, D = x.shape _, V, Nq = masks.shape # V = 2 views all_x = [] for v in range(V): # masks[:, v, :] -> [B, Nq] # We need to expand it for gather: # [B, Nq] -> [B, Nq, D] for gather idx = masks[:, v, :].unsqueeze(-1).expand(-1, -1, D) # [B, Nq, D] # Gather along dim=1 (patch dimension) gathered = torch.gather(x, dim=1, index=idx) # [B, Nq, D] all_x.append(gathered) # Concatenate along batch dimension: # [B, Nq, D] * 2 -> [B*2, Nq, D] return torch.cat(all_x, dim=0)