from contextlib import nullcontext import torch import torch.nn as nn from transformers import CLIPTextModelWithProjection from modules.build import LANGUAGE_REGISTRY from modules.utils import get_mlp_head @LANGUAGE_REGISTRY.register() class CLIPLanguageEncoder(nn.Module): def __init__(self, cfg, weights="openai/clip-vit-large-patch14", output_dim=768, freeze_backbone=True, use_projection=False, dropout=0.1): super().__init__() self.context = torch.no_grad if freeze_backbone else nullcontext self.model = CLIPTextModelWithProjection.from_pretrained(weights) self.use_projection = use_projection if use_projection: self.projection = get_mlp_head(self.model.config.hidden_size, output_dim, output_dim, dropout=dropout) #self.attention = nn.MultiheadAttention(embed_dim=768, num_heads=12, batch_first=True) def forward(self, txt_ids, txt_masks): with self.context(): txt = self.model(txt_ids, txt_masks).last_hidden_state txt = self.model.text_projection(txt) txt = torch.nn.functional.normalize(txt, p=2, dim=2) #txt = self.attention(txt, txt, txt, key_padding_mask=txt_masks.logical_not())[0] if self.use_projection: txt = self.projection(txt) return txt