import torch.nn as nn from modules.third_party.pointnet2.pointnet2_modules import PointnetSAModule def break_up_pc(pc): """ Split the pointcloud into xyz positions and features tensors. This method is taken from VoteNet codebase (https://github.com/facebookresearch/votenet) @param pc: pointcloud [N, 3 + C] :return: the xyz tensor and the feature tensor """ xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features class PointNetPP(nn.Module): """ Pointnet++ encoder. For the hyper parameters please advise the paper (https://arxiv.org/abs/1706.02413) """ def __init__(self, sa_n_points: list, sa_n_samples: list, sa_radii: list, sa_mlps: list, bn=True, use_xyz=True): super().__init__() n_sa = len(sa_n_points) if not (n_sa == len(sa_n_samples) == len(sa_radii) == len(sa_mlps)): raise ValueError('Lens of given hyper-params are not compatible') self.encoder = nn.ModuleList() for i in range(n_sa): self.encoder.append(PointnetSAModule( npoint=sa_n_points[i], nsample=sa_n_samples[i], radius=sa_radii[i], mlp=sa_mlps[i], bn=bn, use_xyz=use_xyz, )) out_n_points = sa_n_points[-1] if sa_n_points[-1] is not None else 1 self.fc = nn.Linear(out_n_points * sa_mlps[-1][-1], sa_mlps[-1][-1]) def forward(self, features): """ @param features: B x N_objects x N_Points x 3 + C """ xyz, features = break_up_pc(features) for i in range(len(self.encoder)): xyz, features = self.encoder[i](xyz, features) return self.fc(features.view(features.size(0), -1))