from modules.layers.transformers import (TransformerDecoderLayer, TransformerEncoderLayer, TransformerSpatialDecoderLayer) class UnifiedSpatialCrossEncoderV2(nn.Module): """ spatial_dim: spatial feature dim, used to modify attention dim_loc: """ def __init__(self, cfg, hidden_size=768, dim_feedforward=2048, num_attention_heads=12, num_layers=4, dim_loc=6): super().__init__() # unfied encoder unified_encoder_layer = TransformerEncoderLayer(hidden_size, num_attention_heads, dim_feedforward=dim_feedforward) self.unified_encoder = layer_repeat(unified_encoder_layer, num_layers) # loc layer loc_layer = nn.Sequential( nn.Linear(dim_loc, hidden_size), nn.LayerNorm(hidden_size), ) self.loc_layers = layer_repeat(loc_layer, 1) # token embedding self.token_type_embeddings = nn.Embedding(2, hidden_size) self.apply(_init_weights_bert) def forward( self, txt_embeds, txt_masks, obj_embeds, obj_locs, obj_masks, output_attentions=False, output_hidden_states=False, **kwargs ): txt_len = txt_embeds.shape[1] obj_len = obj_embeds.shape[1] for i, unified_layer in enumerate(self.unified_encoder): # add embeddings for points query_pos = self.loc_layers[0](obj_locs) pc_token_type_ids = torch.ones((obj_embeds.shape[0:2])).long().cuda() pc_type_embeds = self.token_type_embeddings(pc_token_type_ids) obj_embeds = obj_embeds + query_pos + pc_type_embeds # add embeddings for languages lang_token_type_ids = torch.zeros((txt_embeds.shape[0:2])).long().cuda() lang_type_embeds = self.token_type_embeddings(lang_token_type_ids) txt_embeds = txt_embeds + lang_type_embeds # fuse embeddings joint_embeds = torch.cat((txt_embeds, obj_embeds), dim=1) joint_masks = torch.cat((txt_masks, obj_masks), dim=1) # transformer joint_embeds, self_attn_matrices = unified_layer(joint_embeds, tgt_key_padding_mask=joint_masks.logical_not()) # split txt_embeds, obj_embeds = torch.split(joint_embeds, [txt_len, obj_len], dim=1) return txt_embeds, obj_embeds