import copy import einops import torch import torch.nn as nn import torch.nn.functional as F ######################################################### # General modules helpers ######################################################### def get_activation_fn(activation_type): if activation_type not in ["relu", "gelu", "glu"]: raise RuntimeError(f"activation function currently support relu/gelu, not {activation_type}") return getattr(F, activation_type) def get_mlp_head(input_size, hidden_size, output_size, dropout=0): return nn.Sequential(*[ nn.Linear(input_size, hidden_size), nn.ReLU(), nn.LayerNorm(hidden_size, eps=1e-12), nn.Dropout(dropout), nn.Linear(hidden_size, output_size) ]) def layer_repeat(module, N, share_layer=False): if share_layer: return nn.ModuleList([module] * N) else: return nn.ModuleList([copy.deepcopy(module) for _ in range(N - 1)] + [module]) ######################################################### # Specific modules helpers ######################################################### def calc_pairwise_locs(obj_centers, obj_whls, eps=1e-10, pairwise_rel_type='center', spatial_dist_norm=True, spatial_dim=5): if pairwise_rel_type == 'mlp': obj_locs = torch.cat([obj_centers, obj_whls], 2) pairwise_locs = torch.cat( [einops.repeat(obj_locs, 'b l d -> b l x d', x=obj_locs.size(1)), einops.repeat(obj_locs, 'b l d -> b x l d', x=obj_locs.size(1))], dim=3 ) return pairwise_locs pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \ - einops.repeat(obj_centers, 'b l d -> b 1 l d') pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps) # (b, l, l) if spatial_dist_norm: max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0] norm_pairwise_dists = pairwise_dists / einops.repeat(max_dists, 'b -> b 1 1') else: norm_pairwise_dists = pairwise_dists if spatial_dim == 1: return norm_pairwise_dists.unsqueeze(3) pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps) if pairwise_rel_type == 'center': pairwise_locs = torch.stack( [norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists, pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d, pairwise_locs[..., 0] / pairwise_dists_2d], dim=3 ) elif pairwise_rel_type == 'vertical_bottom': bottom_centers = torch.clone(obj_centers) bottom_centers[:, :, 2] -= obj_whls[:, :, 2] bottom_pairwise_locs = einops.repeat(bottom_centers, 'b l d -> b l 1 d') \ - einops.repeat(bottom_centers, 'b l d -> b 1 l d') bottom_pairwise_dists = torch.sqrt(torch.sum(bottom_pairwise_locs ** 2, 3) + eps) # (b, l, l) bottom_pairwise_dists_2d = torch.sqrt(torch.sum(bottom_pairwise_locs[..., :2] ** 2, 3) + eps) pairwise_locs = torch.stack( [norm_pairwise_dists, bottom_pairwise_locs[..., 2] / bottom_pairwise_dists, bottom_pairwise_dists_2d / bottom_pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d, pairwise_locs[..., 0] / pairwise_dists_2d], dim=3 ) if spatial_dim == 4: pairwise_locs = pairwise_locs[..., 1:] return pairwise_locs def calc_pairwise_locs_mv(obj_centers, pairwise_rel_type='center', spatial_dist_norm=True, spatial_dim=5): eps=1e-10 pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \ - einops.repeat(obj_centers, 'b l d -> b 1 l d') pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps) # (b, l, l) if spatial_dist_norm: max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0] norm_pairwise_dists = pairwise_dists / einops.repeat(max_dists, 'b -> b 1 1') else: norm_pairwise_dists = pairwise_dists if spatial_dim == 1: return norm_pairwise_dists.unsqueeze(3) pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps) if pairwise_rel_type == 'center': pairwise_locs = torch.stack( [norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists, pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d, pairwise_locs[..., 0] / pairwise_dists_2d], dim=3 ) if spatial_dim == 4: pairwise_locs = pairwise_locs[..., 1:] return pairwise_locs # TODO: need to generalize this function to more use cases to be in modules/utils.py def get_mixup_function(mixup_strategy, mixup_stage1, mixup_stage2): if mixup_strategy is None: return None assert mixup_strategy in ['linear_decay', 'all_mixup'] if mixup_strategy == 'linear_decay': return LinearDecayMixup(mixup_stage1, mixup_stage2) elif mixup_strategy == 'all_mixup': return AllMixup() class AllMixup(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, obj_sem_cls_pred, obj_labels, cur_step, total_steps): mixup_sem_cls_pred = torch.zeros_like(obj_sem_cls_pred) for i in range(mixup_sem_cls_pred.shape[0]): for j in range(mixup_sem_cls_pred.shape[1]): if obj_labels[i, j] >= 0: mixup_sem_cls_pred[i, j, obj_labels[i, j]] = 1.0 return mixup_sem_cls_pred class LinearDecayMixup(nn.Module): def __init__(self, mixup_stage1, mixup_stage2) -> None: super().__init__() self.stage1_rate = mixup_stage1 self.stage2_rate = mixup_stage2 assert self.stage2_rate > self.stage1_rate def forward(self, obj_sem_cls_pred, obj_labels, cur_step, total_steps): if cur_step < total_steps * self.stage1_rate: mixup_ratio = 1.0 elif cur_step < total_steps * self.stage2_rate: mixup_ratio = (total_steps * self.stage2_rate - cur_step) / ( (self.stage2_rate - self.stage1_rate) * total_steps) else: mixup_ratio = 0.0 # mixup mixup_sem_cls_pred = obj_sem_cls_pred.clone() # B, O, 607 random_numer = torch.rand(mixup_sem_cls_pred.shape[0:2]) # B, O mixup_mask = random_numer < mixup_ratio for i in range(mixup_sem_cls_pred.shape[0]): for j in range(mixup_sem_cls_pred.shape[1]): if mixup_mask[i, j] and obj_labels[i, j] >= 0: mixup_sem_cls_pred[i, j, :] = 0.0 mixup_sem_cls_pred[i, j, obj_labels[i, j]] = 1.0 return mixup_sem_cls_pred