import math from torch.optim.lr_scheduler import LambdaLR def warmup_cosine(step, warmup_step, total_step, minimum_ratio=1e-5): if step <= warmup_step and warmup_step > 0: return step / warmup_step return max( 0.5 * (1 + math.cos((step - warmup_step) / (total_step - warmup_step) * math.pi)), minimum_ratio ) def warmup_exp(step, warmup_step, total_step, **kwargs): if step <= warmup_step and warmup_step > 0: return step / warmup_step return kwargs["gamma"] ** (step * 1. / (total_step - warmup_step)) def get_scheduler(cfg, optimizer, total_steps): warmup_steps = cfg.solver.sched.args.warmup_steps * cfg.num_gpu minimum_ratio = cfg.solver.sched.args.get("minimum_ratio", 1e-5) lambda_func = lambda step: globals()[cfg.solver.sched.name]( step, warmup_steps, total_steps, minimum_ratio=minimum_ratio ) return LambdaLR(optimizer=optimizer, lr_lambda=lambda_func)