import re import json from glob import glob from omegaconf import OmegaConf from joblib import Parallel, delayed, parallel_backend import torch from plyfile import PlyData import numpy as np import pandas as pd from tqdm import tqdm from preprocess.build import ProcessorBase from preprocess.utils.label_convert import MULTISCAN_SCANNET as label_convert from preprocess.utils.constant import * class MultiScanProcessor(ProcessorBase): def record_splits(self, scan_ids, ratio=0.8): split_dir = self.save_root / 'split' split_dir.mkdir(exist_ok=True) if (split_dir / 'train_split.txt').exists() and (split_dir / 'val_split.txt').exists(): return scan_len = len(scan_ids) split = { 'train': [], 'val': []} cur_split = 'train' for scan_id in tqdm(sorted(scan_ids)): split[cur_split].append(scan_id) if len(split['train']) > ratio*scan_len: cur_split = 'val' for _s, _c in split.items(): with open(split_dir / f'{_s}_split.txt', 'w', encoding='utf-8') as fp: fp.write('\n'.join(_c)) def read_all_scans(self): scan_paths = glob(str(self.data_root) + '/*') scans_df = [] for scan_path in scan_paths: scan_id = re.findall(r"scene\_[0-9]{5}\_[0-9]{2}", scan_path)[0] scene_id = '_'.join(scan_id.split('_')[:-1]) row = pd.DataFrame([[scene_id, scan_id, scan_path]], columns=['sceneId', 'scanId', 'scanPath']) scans_df.append(row) scans_df = pd.concat(scans_df) return scans_df def process_point_cloud(self, scan_id, plydata, annotations): inst_to_label = {} _x = np.asarray(plydata['vertex']['x']) _y = np.asarray(plydata['vertex']['y']) _z = np.asarray(plydata['vertex']['z']) _nx = np.asarray(plydata['vertex']['nx']) _ny = np.asarray(plydata['vertex']['ny']) _nz = np.asarray(plydata['vertex']['nz']) _red = plydata['vertex']['red'].astype('float64') _green = plydata['vertex']['green'].astype('float64') _blue = plydata['vertex']['blue'].astype('float64') vertices = np.column_stack((_x, _y, _z)) vertex_colors = np.column_stack((_red, _green, _blue)) vertex_instance = np.zeros((vertices.shape[0])) triangles = np.vstack(plydata['face'].data['vertex_indices']) object_ids = plydata['face'].data['objectId'] part_ids = plydata['face'].data['partId'] semseg_df = pd.DataFrame({'objectId': object_ids, 'partId': part_ids}) df = self.annotations_to_dataframe_obj(annotations) for _, row in df.iterrows(): object_id = row['objectId'] assert object_id > 0, f"object id should be greater than 0, but got {object_id}" object_label = row['objectLabel'].split('.')[0] object_label_sn607 = label_convert[object_label] condition1 = semseg_df['objectId'] == object_id tri_indices = semseg_df[condition1].index.values object_vertices = np.unique(triangles[tri_indices]) vertex_instance[object_vertices] = object_id inst_to_label[object_id] = object_label_sn607 if np.max(vertex_colors) <= 1: vertex_colors = vertex_colors * 255.0 center_points = np.mean(vertices, axis=0) center_points[2] = np.min(vertices[:, 2]) vertices = vertices - center_points assert vertex_colors.shape == vertices.shape assert vertex_colors.shape[0] == vertex_instance.shape[0] if self.check_key(self.output.pcd): torch.save(inst_to_label, self.inst2label_path / f"{scan_id}.pth") torch.save((vertices, vertex_colors, vertex_instance), self.pcd_path / f"{scan_id}.pth") @staticmethod def annotations_to_dataframe_obj(annotations): objects = annotations['objects'] df_list = [] for obj in objects: object_id = obj['objectId'] object_label = obj['label'] df_row = pd.DataFrame( [[object_id, object_label]], columns=['objectId', 'objectLabel'] ) df_list.append(df_row) df = pd.concat(df_list) return df def scene_proc(self, scan_id): data_root = self.data_root / scan_id plydata = PlyData.read(data_root / f'{scan_id}.ply') with open((data_root / f'{scan_id}.annotations.json'), "r", encoding='utf-8') as f: annotations = json.load(f) # process point cloud self.process_point_cloud(scan_id, plydata, annotations) def process_scans(self): scans_df = self.read_all_scans() scan_ids = scans_df['scanId'].unique() self.log_starting_info(len(scan_ids)) if self.num_workers > 1: with parallel_backend('multiprocessing', n_jobs=self.num_workers): Parallel()(delayed(self.scene_proc)(scan_id) for scan_id in tqdm(scan_ids)) else: for scan_id in tqdm(scan_ids): print(scan_id) self.scene_proc(scan_id) if __name__ == '__main__': cfg = OmegaConf.create({ 'data_root': '/path/to/MultiScan', 'save_root': '/output/path/to/MultiScan', 'num_workers': 1, 'output': { 'pcd': True, } }) processor = MultiScanProcessor(cfg) processor.process_scans()