import json from glob import glob from omegaconf import OmegaConf from joblib import Parallel, delayed, parallel_backend import torch import numpy as np import trimesh import open3d as o3d from tqdm import tqdm from preprocess.build import ProcessorBase from preprocess.utils.label_convert import RSCAN_SCANNET as label_convert from preprocess.utils.align_utils import compute_box_3d, calc_align_matrix, rotate_z_axis_by_degrees from preprocess.utils.constant import * class RScanProcessor(ProcessorBase): def record_splits(self, scan_ids, ratio=0.8): split_dir = self.save_root / 'split' split_dir.mkdir(exist_ok=True) if (split_dir / 'train_split.txt').exists() and (split_dir / 'val_split.txt').exists(): return scan_len = len(scan_ids) split = { 'train': [], 'val': []} cur_split = 'train' for scan_id in tqdm(sorted(scan_ids)): split[cur_split].append(scan_id) if len(split['train']) > ratio*scan_len: cur_split = 'val' for _s, _c in split.items(): with open(split_dir / f'{_s}_split.txt', 'w', encoding='utf-8') as fp: fp.write('\n'.join(_c)) def read_all_scans(self): scan_paths = glob(str(self.data_root) + '/*') scan_ids = [path.split('/')[-1] for path in scan_paths] return scan_ids def process_point_cloud(self, scan_id, plydata, annotations): plylabel, segments, aggregation = annotations vertices = plydata.vertices vertex_colors = trimesh.visual.uv_to_color(plydata.visual.uv, plydata.visual.material.image) vertex_colors = vertex_colors[:, :3] / 255.0 none_list = list() seg_to_inst = {} # segment id to object id inst_to_label = {} # object id to label name seg_indices = segments['segIndices'] seg_group = aggregation['segGroups'] bbox_list = [] for i, _ in enumerate(seg_group): if seg_group[i]['label'] not in label_convert: none_list.append(seg_group[i]['label']) continue inst_to_label[seg_group[i]['id']] = label_convert[seg_group[i]['label']] rotation = np.array(seg_group[i]["obb"]["normalizedAxes"]).reshape(3, 3) transform = np.array(seg_group[i]["obb"]["centroid"]).reshape(-1, 3) scale = np.array(seg_group[i]["obb"]["axesLengths"]).reshape(-1, 3) trns = np.eye(4) trns[0:3, 3] = transform trns[0:3, 0:3] = rotation.T box3d = compute_box_3d(scale.reshape(3).tolist(), transform, rotation) bbox_list.append(box3d) for j in seg_group[i]['segments']: seg_to_inst[j] = seg_group[i]['id'] assert seg_group[i]['id'] == seg_group[i]['objectId'] assert seg_group[i]['id'] > 0 query_points = vertices pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(np.array(plylabel.vertices, dtype=np.float64)) tree = o3d.geometry.KDTreeFlann(pcd) out_instance = [] for i, _ in enumerate(query_points): point = query_points[i] [k, idx, distance] = tree.search_radius_vector_3d(point,0.1) if k == 0: out_instance.append(-1) else: nn_idx = idx[0] if seg_indices[nn_idx] not in seg_to_inst.keys(): out_instance.append(-1) else: out_instance.append(seg_to_inst[seg_indices[nn_idx]]) # alignment: axis-aligned rotation align_angle = calc_align_matrix(bbox_list) vertices = rotate_z_axis_by_degrees(np.array(vertices), align_angle) # alignment: color range if np.max(vertex_colors) <= 1: vertex_colors = vertex_colors * 255.0 # alignment: translation center_points = np.mean(vertices, axis=0) center_points[2] = np.min(vertices[:, 2]) vertices= vertices - center_points vertex_instance = np.array(out_instance) assert vertex_colors.shape == vertices.shape assert vertex_colors.shape[0] == vertex_instance.shape[0] if self.check_key(self.output.pcd): torch.save(inst_to_label, self.inst2label_path / f"{scan_id}.pth") torch.save((vertices, vertex_colors, vertex_instance), self.pcd_path / f"{scan_id}.pth") np.save(self.pcd_path / f"{scan_id}_align_angle.npy", align_angle) def scene_proc(self, scan_id): data_root = self.data_root / scan_id plydata = trimesh.load(data_root / 'mesh.refined.v2.obj', process=False) if not (data_root / 'labels.instances.annotated.v2.ply').exists(): return plylabel = trimesh.load(data_root / 'labels.instances.annotated.v2.ply', process=False) with open((data_root / 'mesh.refined.0.010000.segs.v2.json'), "r", encoding='utf-8') as f: segments = json.load(f) with open((data_root / 'semseg.v2.json'), "r", encoding='utf-8') as f: aggregation = json.load(f) # process point cloud self.process_point_cloud(scan_id, plydata, (plylabel, segments, aggregation)) def process_scans(self): scan_ids = self.read_all_scans() self.log_starting_info(len(scan_ids)) if self.num_workers > 1: with parallel_backend('multiprocessing', n_jobs=self.num_workers): Parallel()(delayed(self.scene_proc)(scan_id) for scan_id in tqdm(scan_ids)) else: for scan_id in tqdm(scan_ids): self.scene_proc(scan_id) if __name__ == '__main__': cfg = OmegaConf.create({ 'data_root': '/path/to/3RScan', 'save_root': '/output/path/to/3RScan', 'num_workers': 1, 'output': { 'pcd': True, } }) processor = RScanProcessor(cfg) processor.process_scans()