import pickle from glob import glob from omegaconf import OmegaConf from joblib import Parallel, delayed, parallel_backend import torch import numpy as np from tqdm import tqdm from preprocess.build import ProcessorBase from preprocess.utils.label_convert import S3D_SCANNET as label_convert from preprocess.utils.constant import * PTS_LIMIT = 480000 class S3DProcessor(ProcessorBase): def record_splits(self, scan_ids): split_dir = self.save_root / 'split' split_dir.mkdir(exist_ok=True) split = { 'train': [], 'val': [], 'test': []} split['train'] = [scan_id[1] for scan_id in scan_ids if scan_id[0] == 'train'] split['val'] = [scan_id[1] for scan_id in scan_ids if scan_id[0] == 'val'] split['test'] = [scan_id[1] for scan_id in scan_ids if scan_id[0] == 'test'] for _s, _c in split.items(): with open(split_dir / f'{_s}_split.txt', 'w', encoding='utf-8') as fp: fp.write('\n'.join(_c)) def read_all_scans(self): scan_ids = [] for split in ['train', 'val', 'test']: scan_paths = glob(str(self.data_root) + f'/{split}/*') scan_ids.extend([(split, '_'.join(path.split('/')[-1].split('_')[:-2])) for path in scan_paths]) return scan_ids def process_point_cloud(self, scan_id, plydata, annotations): vertices = plydata[0] vertex_colors = (plydata[1][:,:3] + 1) / 2.0 * 255.0 vertex_instance = - np.ones((vertices.shape[0])) inst_to_label = {} for _id, _box in enumerate(annotations['gt_boxes_upright_depth']): if annotations['class'][_id] in [38, 39, 40]: continue centroid = _box[:3] dimension = _box[3:6] box_max = centroid + dimension/2 box_min = centroid - dimension/2 point_max_mask = np.all(vertices < box_max, axis=1) point_min_mask = np.all(vertices > box_min, axis=1) point_mask = np.logical_and(point_max_mask, point_min_mask) vertex_instance[point_mask] = _id inst_to_label[_id] = label_convert[annotations['class'][_id]] center_points = np.mean(vertices, axis=0) center_points[2] = np.min(vertices[:, 2]) vertices = vertices - center_points assert vertex_colors.shape == vertices.shape assert vertex_colors.shape[0] == vertex_instance.shape[0] if vertices.shape[0] > PTS_LIMIT: pcd_idxs = np.random.choice(vertices.shape[0], size=PTS_LIMIT, replace=False) vertices = vertices[pcd_idxs] colors = colors[pcd_idxs] vertex_instance = vertex_instance[pcd_idxs] if self.check_key(self.output.pcd): torch.save(inst_to_label, self.inst2label_path / f"{scan_id}.pth") torch.save((vertices, vertex_colors, vertex_instance), self.pcd_path / f"{scan_id}.pth") def scene_proc(self, scan_id): split = scan_id[0] scan_id = scan_id[1] data_root = self.data_root / split if not (data_root / f'{scan_id}_1cm_seg.pth').exists(): return if not (self.data_root.parent / 'anno_mask' / f'{scan_id}_1cm.bin').exists(): return plydata = torch.load(data_root / f'{scan_id}_1cm_seg.pth') with open(self.data_root.parent / 'anno_mask' / f'{scan_id}_1cm.bin', 'rb') as f: annotations = pickle.load(f) # process point cloud self.process_point_cloud(scan_id, plydata, annotations) def process_scans(self): scan_ids = self.read_all_scans() self.log_starting_info(len(scan_ids)) if self.num_workers > 1: with parallel_backend('multiprocessing', n_jobs=self.num_workers): Parallel()(delayed(self.scene_proc)(scan_id) for scan_id in tqdm(scan_ids)) else: for scan_id in tqdm(scan_ids): self.scene_proc(scan_id) if __name__ == '__main__': # we use the data processing for Structured3D from Swin3D, # please refer to https://github.com/yuxiaoguo/Uni3DScenes for more details. cfg = OmegaConf.create({ 'data_root': '/path/to/Structured3D/data_out/swin3d_new', 'save_root': '/output/path/to/Structured3D', 'num_workers': 1, 'output': { 'pcd': True, } }) processor = S3DProcessor(cfg) processor.process_scans()