# import os # import torch # import json # import re # from PIL import Image # import torch.nn.functional as F # from safetensors.torch import load_file # from huggingface_hub import hf_hub_download # import sys # sys.path.append("/gpfs/home/ym621/UniPointMap") # import open_clip # # --------------------------- # # Helpers # # --------------------------- # def load_safetensor_from_hf(repo_id, filename, repo_type="dataset"): # cached_path = hf_hub_download( # repo_id=repo_id, # filename=filename, # revision='7bb7c7f3d379c5145bb06d2cf0949c66ac9a2c4e', # repo_type=repo_type, # local_files_only=True # ) # return load_file(cached_path) # def load_json(data_path: str): # with open(data_path, "r", encoding="utf-8") as f: # return json.load(f) # def load_jsonl(path): # data = [] # with open(path, "r", encoding="utf-8") as f: # for line in f: # if line.strip(): # data.append(json.loads(line)) # return data # # --------------------------- # # Load CLIP model # # --------------------------- # device = "cuda" if torch.cuda.is_available() else "cpu" # model, _, preprocess = open_clip.create_model_and_transforms( # 'ViT-B-16', pretrained='datacomp_xl_s13b_b90k' # ) # tokenizer = open_clip.get_tokenizer('ViT-B-16') # model = model.to(device).eval() # # --------------------------- # # Preload reference captions # # --------------------------- # scannet_data = load_jsonl('/gpfs/home/ym621/UniPointMap/PointMapVerse/existing_datasets/ScanNet/annotations/scannet_caption_per_view.jsonl') # arkitscenes_data = load_jsonl('/gpfs/home/ym621/UniPointMap/PointMapVerse/existing_datasets/Arkitscenes/annotations/arkitscenes_caption_per_view.jsonl') # rscan_data = load_jsonl('/gpfs/home/ym621/UniPointMap/PointMapVerse/existing_datasets/3RScan/annotations/3rscan_caption_per_view.jsonl') # org_data = {} # cur_scan_id = '' # for idx, data in enumerate([scannet_data, arkitscenes_data, rscan_data]): # if idx == 0: # root = 'light_scannet' # elif idx == 1: # root = 'light_arkitscenes' # else: # root = 'light_3rscan' # local_idx = 0 # for item in data: # if item['scan_id'] != cur_scan_id: # cur_scan_id = item['scan_id'] # local_idx = 0 # scan_id = f"{root}/{item['scan_id']}_{local_idx}" # org_data[scan_id] = item['utterance'].split('.') # local_idx += 1 # # --------------------------- # # Caching safetensors # # --------------------------- # safetensor_cache = {} # def get_image_from_safetensor(image_path, idx): # if image_path not in safetensor_cache: # safetensor_cache[image_path] = load_safetensor_from_hf( # 'MatchLab/PointMapVerse', image_path # ) # return safetensor_cache[image_path]['color_images'][idx] # # --------------------------- # # Process captions # # --------------------------- # caption_dir = "../captions" # captions = [f for f in os.listdir(caption_dir) if f.endswith('.json')] # filtered_captions = {} # count, total_count = 0, 0 # for cap in captions: # cap_path = os.path.join(caption_dir, cap) # caption_data = load_json(cap_path) # for k, v in caption_data.items(): # image_path = f"{'_'.join(k.split('_')[:-1])}.safetensors" # idx = int(k.split('_')[-1]) # # --- load + preprocess image --- # img_tensor = get_image_from_safetensor(image_path, idx) # img_tensor = img_tensor.cpu().numpy() # pil_img = Image.fromarray(img_tensor.astype("uint8")).convert("RGB") # image = preprocess(pil_img).unsqueeze(0).to(device) # with torch.no_grad(): # image_features = model.encode_image(image) # image_features = F.normalize(image_features, dim=-1) # # --- clean captions --- # if "1." in v: # v = v.split("1.", 1)[-1].strip() # v = "1." + v # if not v.startswith('1.'): # v = ["An image showing an indoor scene."] # count += 1 # else: # v = re.split(r'\s*\d+\.\s*', v) # v = [c.strip().replace('*', '') for c in v if c.strip()] # if len(v) < 4: # v = ["An image showing an indoor scene."] # count += 1 # # --- combine old + new captions --- # old_v = org_data.get(k, []) # all_v = old_v + v # # --- encode captions --- # with torch.no_grad(): # text_tokens = tokenizer(all_v).to(device) # text_features = model.encode_text(text_tokens) # text_features = F.normalize(text_features, dim=-1) # sims = (image_features @ text_features.T).squeeze(0) # [num_caps] # # --- sort captions (fast torch.topk instead of sorted) --- # topk_vals, topk_idx = torch.topk(sims, k=len(all_v)) # # print(topk_vals) # sorted_captions = [all_v[i] for i in topk_idx.tolist()] # # print(sorted_captions) # filtered_captions[k] = sorted_captions # total_count += 1 # if total_count % 50 == 0: # print(f"Processed {total_count} files...") # # --------------------------- # # Save results # # --------------------------- # output_path = os.path.join(caption_dir, "filtered_captions_sorted.json") # with open(output_path, "w", encoding="utf-8") as f: # json.dump(filtered_captions, f, indent=4) # print(f'Total captions not starting with "1.": {count} out of {total_count} captions.') # print(f"Sorted captions saved to {output_path}") # --------------------------- # Save results as JSONL # --------------------------- import os import json from transformers import AutoTokenizer # --------------------------- # Paths # --------------------------- caption_dir = "../captions" filtered_json_path = os.path.join(caption_dir, "filtered_captions_sorted.json") # Output files for each dataset output_paths = { "scannet": os.path.join(caption_dir, "filtered_captions_scannet.jsonl"), "arkitscenes": os.path.join(caption_dir, "filtered_captions_arkitscenes.jsonl"), "3rscan": os.path.join(caption_dir, "filtered_captions_3rscan.jsonl"), } # --------------------------- # Load filtered captions # --------------------------- with open(filtered_json_path, "r", encoding="utf-8") as f: filtered_captions = json.load(f) print(f"Loaded {len(filtered_captions)} scan entries.") # --------------------------- # Setup tokenizer (bert-base-uncased) # --------------------------- tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # --------------------------- # Open three output files # --------------------------- files = {k: open(path, "w", encoding="utf-8") for k, path in output_paths.items()} line_ids = {"scannet": 1, "arkitscenes": 1, "3rscan": 1} # --------------------------- # Convert and write entries # --------------------------- for k, sorted_captions in filtered_captions.items(): # Determine dataset type if k.startswith("light_scannet"): dataset = "scannet" elif k.startswith("light_arkitscenes"): dataset = "arkitscenes" elif k.startswith("light_3rscan"): dataset = "3rscan" else: continue # skip unknown dataset keys image_path = f"{'_'.join(k.split('_')[:-1])}.safetensors" scan_id = "_".join(k.split("_")[:-1]).split("/")[-1] # e.g. scene0000_00 # Clean and join top-5 captions sorted_captions = [cap.replace('.', '').strip() for cap in sorted_captions] entry = { "item_id": f"{dataset}_train_{line_ids[dataset]:06d}", "scan_id": scan_id, "utterance": sorted_captions, "safetensors_path": image_path, } # Write to the correct file files[dataset].write(json.dumps(entry) + "\n") line_ids[dataset] += 1 # --------------------------- # Close files # --------------------------- for f in files.values(): f.close() print(f"✅ Saved entries to:") for k, path in output_paths.items(): print(f" {k}: {path} ({line_ids[k]-1} entries)")