import torch, torch.nn as nn from transformers import BertTokenizer, BertModel # or CLIPTextModel from PIL import Image from transformers import ( AutoImageProcessor, AutoTokenizer, AutoModelForCausalLM, ) import torch.nn.functional as F class MultiViewVQAClassifier(nn.Module): def __init__(self, image_embed_dim: int, num_answers: int, fusion_width: int = 512, n_fusion_layers: int = 4): super().__init__() # ---- text encoder ---- text_embed_dim = image_embed_dim # ---- projections to a shared width ---- self.img_proj = nn.Linear(image_embed_dim, fusion_width) self.txt_proj = nn.Linear(text_embed_dim, fusion_width) # ---- fusion encoder over (32 + L) tokens ---- model_root = "qihoo360/fg-clip-base" # image_size=224 self.model = AutoModelForCausalLM.from_pretrained(model_root,trust_remote_code=True).cuda() # device = model.device encoder_layer = nn.TransformerEncoderLayer( d_model=fusion_width, nhead=8, dim_feedforward=fusion_width * 4, batch_first=True ) self.fusion = nn.TransformerEncoder(encoder_layer, num_layers=n_fusion_layers) # ---- classification head ---- self.head = nn.Sequential( nn.Linear(fusion_width, fusion_width), nn.ReLU(), nn.Linear(fusion_width, num_answers) ) def forward(self, images, questions, answer_targets=None): """ image_cls : FloatTensor (B, 32, D_img) – CLS from every view questions : list[str] – raw question strings answer_targets : LongTensor (B,) or None – index in answer vocab """ image_cls = torch.stack([ self.model.get_image_features(images[:, i, ...]) # (B, D_img) for i in range(images.shape[1]) ], dim=1) B = image_cls.size(0) # project images img_tokens = self.img_proj(image_cls) # (B,32,512) # encode question txt_hidden = self.model.get_text_features(questions) txt_tokens = self.txt_proj(txt_hidden).unsqueeze(1) # (B,L,512) # concat & fuse fused = torch.cat([img_tokens, txt_tokens], dim=1) # (B,32+L,512) fused = self.fusion(fused) # (B,32+L,512) # pool – use first image view token (or mean-pool) pooled = fused[:, 0] # (B,512) logits = self.head(pooled) # (B,num_answers) loss = None if answer_targets is not None: loss = nn.functional.cross_entropy(logits, answer_targets) return {"logits": logits, "loss": loss} if __name__ == "__main__": import numpy as np # Example usage images = ['light_scannet/scene0000_00/color/00140.jpg', 'light_scannet/scene0000_00/color/00400.jpg'] images = [Image.open(img).convert('RGB') for img in images] images = np.array(images) model_root = "qihoo360/fg-clip-base" image_processor = AutoImageProcessor.from_pretrained(model_root) images = image_processor.preprocess(images, return_tensors='pt')['pixel_values'] images = torch.tensor(images, dtype=torch.float32).unsqueeze(0) # Add batch dimension questions = ["What is in the image?"] tokenizer = AutoTokenizer.from_pretrained(model_root) q = tokenizer(questions, return_tensors="pt", padding=True, truncation=True) q = torch.tensor(q.input_ids, dtype=torch.long).cuda() print(images.shape, q.shape) model = MultiViewVQAClassifier(image_embed_dim=512, num_answers=1000) model = model.cuda() images = images.cuda() result = model(images, q) print(result["logits"].shape, result["loss"])