import argparse import random import json from pathlib import Path import numpy as np import torch import open3d as o3d def convert_pc_to_box(obj_pc): xmin = np.min(obj_pc[:,0]) ymin = np.min(obj_pc[:,1]) zmin = np.min(obj_pc[:,2]) xmax = np.max(obj_pc[:,0]) ymax = np.max(obj_pc[:,1]) zmax = np.max(obj_pc[:,2]) center = [(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2] box_size = [xmax-xmin, ymax-ymin, zmax-zmin] return center, box_size def load_scan(pcd_path, inst2label_path, scene_name): pcd_data = torch.load(pcd_path / f'{scene_name}.pth') inst_to_label = torch.load(inst2label_path / f"{scene_name}.pth") points, colors, instance_labels = pcd_data[0], pcd_data[1], pcd_data[-1] pcds = np.concatenate([points, colors], 1) return points, colors, pcds, instance_labels, inst_to_label def visualize_one_scene(obj_pcds, points, colors, caption): # visualize scene o3d_pcd = o3d.geometry.PointCloud() o3d_pcd.points = o3d.utility.Vector3dVector(points) o3d_pcd.colors = o3d.utility.Vector3dVector(colors / 255.0) # visualize gt for idx, (obj, obj_label) in enumerate(obj_pcds): if idx > 3: break gt_center, gt_size = convert_pc_to_box(obj) gt_o3d_box = o3d.geometry.OrientedBoundingBox(gt_center, np.eye(3,3), gt_size) gt_o3d_box.color = [0, 1, 0] mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.6, origin=[-0, -0, -0]) o3d.visualization.draw_geometries([o3d_pcd, gt_o3d_box, mesh_frame], window_name=obj_label+'_'+caption) def visualize_data(save_root, scene_name, vis_obj=True): inst2label_path = save_root / 'instance_id_to_label' pcd_path = save_root / 'pcd_with_global_alignment' points, colors, pcds, instance_labels, inst_to_label = load_scan(pcd_path, inst2label_path, scene_name) if not vis_obj: o3d_pcd = o3d.geometry.PointCloud() mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.6, origin=[-0, -0, -0]) o3d_pcd.points = o3d.utility.Vector3dVector(points) o3d_pcd.colors = o3d.utility.Vector3dVector(colors / 255.0) o3d.visualization.draw_geometries([mesh_frame, o3d_pcd]) return obj_pcds = [] for i in inst_to_label.keys(): mask = instance_labels == i # time consuming if np.sum(mask) == 0: continue obj_pcds.append((pcds[mask], inst_to_label[i])) visualize_one_scene(obj_pcds, points, colors, scene_name) def visualize_refer(save_root, anno_file): inst2label_path = save_root / 'instance_id_to_label' pcd_path = save_root / 'pcd_with_global_alignment' json_data = json.load(open(anno_file, 'r', encoding='utf8')) for item in json_data: scan_id = item['scan_id'] inst2label_path = save_root / 'instance_id_to_label' pcd_path = save_root / 'pcd_with_global_alignment' inst_to_label = torch.load(inst2label_path / f"{scan_id}.pth") pcd_data = torch.load(pcd_path / f'{scan_id}.pth') points, colors, instance_labels = pcd_data[0], pcd_data[1], pcd_data[-1] pcds = np.concatenate([points, colors], 1) target_id = int(item['target_id']) mask = instance_labels == target_id if np.sum(mask) == 0: continue obj_pcds = [(pcds[mask], inst_to_label[target_id])] visualize_one_scene(obj_pcds, points, colors, scan_id+'-'+item['utterance']) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-r", "--root", required=True, type=str, help="path of dataset dir") parser.add_argument("-d", "--dataset", type=str, help="available datasets in ['ARKitScenes', 'HM3D', 'MultiScan', 'ProcThor', \ 'Structured3D', 'ScanNet', '3RScan']") parser.add_argument("--vis_refer", action="store_true", help="visualize reference data") parser.add_argument("-a", "--anno", type=str, default="ssg_ref_rel2_template.json", help="the annotation file for reference") args = parser.parse_args() dataset = args.dataset assert dataset in ['ARKitScenes', 'HM3D', 'MultiScan', 'ProcThor', 'Structured3D', 'ScanNet', '3RScan'] print(dataset) data_root = Path(args.root) / dataset if args.vis_refer: if dataset == 'ScanNet': anno_file = data_root / 'annotations/refer' / args.anno else: anno_file = data_root / 'annotations' / args.anno visualize_refer(data_root / 'scan_data', anno_file) else: all_scans = (data_root / 'scan_data' / 'pcd_with_global_alignment').glob('*.pth') scene_id = Path(random.choice(list(all_scans))).stem visualize_data(data_root / 'scan_data', scene_id) # from transformers import BertConfig, BertModel, BertTokenizer # hidden_size=768 # num_hidden_layers=4 # num_attention_heads=12 # type_vocab_size=2 # weights="bert-base-uncased" # tok = BertTokenizer.from_pretrained("bert-base-uncased") # print(tok.convert_tokens_to_ids("all_good")) # should print an int, not crash # bert_config = BertConfig( # hidden_size=hidden_size, # num_hidden_layers=num_hidden_layers, # num_attention_heads=num_attention_heads, # type_vocab_size=type_vocab_size # ) # model = BertModel.from_pretrained( # weights, config=bert_config # )