import copy from tqdm import tqdm import torch from trainer.build import TRAINER_REGISTRY from trainer.build import BaseTrainer @TRAINER_REGISTRY.register() class DebugTrainer(BaseTrainer): def __init__(self, cfg): super().__init__(cfg) self.best_metric = -1 def forward(self, data_dict): return self.model(data_dict) def backward(self, loss): self.optimizer.zero_grad() self.accelerator.backward(loss) if self.grad_norm is not None and self.accelerator.sync_gradients: self.accelerator.clip_grad_norm_(self.model.parameters(), self.grad_norm) self.optimizer.step() self.scheduler.step() def train_step(self, epoch): self.model.train() loader = self.data_loaders["train"] pbar = tqdm(range(len(loader)), disable=(not self.accelerator.is_main_process), desc=f"[Epoch {epoch + 1}/{self.epochs}]") for i, data_dict in enumerate(loader): with self.accelerator.accumulate(self.model): data_dict['cur_step'] = epoch * len(loader) + i data_dict['total_steps'] = self.total_steps # forward pbar.update(1) @torch.no_grad() def eval_step(self, epoch): self.model.eval() loader = self.data_loaders["val"] pbar = tqdm(range(len(loader)), disable=(not self.accelerator.is_main_process)) for i, data_dict in enumerate(loader): pbar.update(1) return @torch.no_grad() def test_step(self): self.model.eval() loader = self.data_loaders["test"] pbar = tqdm(range(len(loader)), disable=(not self.accelerator.is_main_process)) for i, data_dict in enumerate(loader): pbar.update(1) return def run(self): if self.mode == "train": start_epoch = self.exp_tracker.epoch self.global_step = start_epoch * len(self.data_loaders["train"]) for epoch in range(start_epoch, self.epochs): self.exp_tracker.step() self.train_step(epoch) if self.epochs_per_eval and (epoch + 1) % self.epochs_per_eval == 0: self.eval_step(epoch) break self.test_step() if self.mode == "train": self.accelerator.end_training()