import copy from tqdm import tqdm import torch from trainer.build import TRAINER_REGISTRY from trainer.build import BaseTrainer @TRAINER_REGISTRY.register() class DefaultTrainer(BaseTrainer): def __init__(self, cfg): super().__init__(cfg) self.best_metric = -1 def forward(self, data_dict, mode): return self.model(data_dict, mode) def backward(self, loss): self.optimizer.zero_grad() self.accelerator.backward(loss) if self.grad_norm is not None and self.accelerator.sync_gradients: self.accelerator.clip_grad_norm_(self.model.parameters(), self.grad_norm) self.optimizer.step() self.scheduler.step() def train_step(self, epoch): self.model.train() loader = self.data_loaders["train"] pbar = tqdm(range(len(loader)), disable=(not self.accelerator.is_main_process), desc=f"[Epoch {epoch + 1}/{self.epochs}]") for i, data_dict in enumerate(loader): with self.accelerator.accumulate(self.model): data_dict['cur_step'] = epoch * len(loader) + i data_dict['total_steps'] = self.total_steps # forward data_dict = self.forward(data_dict, mode = 'qa') # calculate loss loss, losses = self.loss(data_dict) self.backward(loss) # record self.global_step += 1 log_dict = {'step': self.global_step} log_dict.update(losses) self.log(log_dict, mode="train") pbar.update(1) def _gather_for_metrics(self, data_dict): """ Gather the minimal fields evaluator needs across processes. Assumes these are tensors. """ out = {} for k in ["answer_scores", "answer_label", "sqa_type"]: v = data_dict[k] out[k] = self.accelerator.gather_for_metrics(v) return out @torch.no_grad() def eval_step(self, epoch): self.model.eval() loader = self.data_loaders["val"] pbar = tqdm(range(len(loader)), disable=(not self.accelerator.is_main_process)) for _, data_dict in enumerate(loader): data_dict = self.forward(data_dict, mode="qa") gathered = {} for k in ["answer_scores", "answer_label", "sqa_type"]: gathered[k] = self.accelerator.gather_for_metrics(data_dict[k]) if self.accelerator.is_main_process: self.evaluator.update(gathered) pbar.update(1) self.accelerator.wait_for_everyone() if self.accelerator.is_main_process: is_best, results = self.evaluator.record() if is_best: self.best_metric = results["target_metric"] self.log(results, mode="val") self.evaluator.reset() return is_best return False @torch.no_grad() def test_step(self): self.model.eval() loader = self.data_loaders["val"] pbar = tqdm(range(len(loader)), disable=(not self.accelerator.is_main_process)) for _, data_dict in enumerate(loader): data_dict = self.forward(data_dict, mode="qa") # gather minimal fields needed for metrics across all GPUs gathered = {} for k in ["answer_scores", "answer_label", "sqa_type"]: gathered[k] = self.accelerator.gather_for_metrics(data_dict[k]) # only main process accumulates + records to avoid double counting if self.accelerator.is_main_process: self.evaluator.update(gathered) pbar.update(1) self.accelerator.wait_for_everyone() if self.accelerator.is_main_process: _, results = self.evaluator.record(split="test") self.log(results, mode="test") self.evaluator.reset() else: results = None # broadcast results (optional). If you only need results on main, you can just return None on others. return results if self.accelerator.is_main_process else None def run(self): if self.mode == "train": model = self.model.module if hasattr(self.model, 'module') else self.model model.set_downstream_mode() start_epoch = self.exp_tracker.epoch num_trainable_params = 0 for name, param in self.model.named_parameters(): if param.requires_grad: num_trainable_params += param.numel() print(f"Total number of trainable parameters: {num_trainable_params:,}") self.global_step = start_epoch * len(self.data_loaders["train"]) for epoch in range(start_epoch, self.epochs): self.exp_tracker.step() self.train_step(epoch) if self.epochs_per_eval and (epoch + 1) % self.epochs_per_eval == 0: is_best = self.eval_step(epoch) self.accelerator.print(f"[Epoch {epoch + 1}/{self.epochs}] finished eval, is_best: {is_best}") else: is_best = False self.accelerator.wait_for_everyone() if self.accelerator.is_main_process: self.save("latest.pth") if is_best: self.save("best.pth") if self.epochs_per_save and (epoch + 1) % self.epochs_per_save == 0: self.save(f"ckpt_{epoch+1}.pth") self.test_step() if self.mode == "train": self.accelerator.end_training()