Upload 16 files
Browse files- ai_researcher/__init__.py +9 -0
- ai_researcher/ai_researcher_expert.py +106 -0
- ai_researcher/domain.py +55 -0
- ai_researcher/memory.py +65 -0
- ai_researcher/prompts/base_prompt.txt +32 -0
- ai_researcher/prompts/config.json +22 -0
- ai_researcher/prompts/examples.json +62 -0
- ai_researcher/tools.py +55 -0
- quantitative_analyst/__init__.py +9 -0
- quantitative_analyst/domain.py +53 -0
- quantitative_analyst/memory.py +53 -0
- quantitative_analyst/prompts/base_prompt.txt +23 -0
- quantitative_analyst/prompts/config.json +21 -0
- quantitative_analyst/prompts/examples.json +38 -0
- quantitative_analyst/quantitative_analyst_expert.py +101 -0
- quantitative_analyst/tools.py +51 -0
ai_researcher/__init__.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Initialize the AI Researcher expert module.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from .ai_researcher_expert import AIResearcherExpert
|
| 6 |
+
from experts.registry import registry
|
| 7 |
+
|
| 8 |
+
# Register the expert with the global registry
|
| 9 |
+
registry.register(AIResearcherExpert())
|
ai_researcher/ai_researcher_expert.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
AIResearcherExpert: A specialized expert for AI/ML research, evaluation, and safety analysis.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import Dict, Any, Optional
|
| 6 |
+
from experts.base_expert import BaseExpert
|
| 7 |
+
from experts.domain import DomainBase
|
| 8 |
+
from experts.tools import ToolBase
|
| 9 |
+
from experts.shared import shared
|
| 10 |
+
from experts.chain_tracker import ChainTracker
|
| 11 |
+
from experts.shared_memory import SharedMemory
|
| 12 |
+
|
| 13 |
+
class AIResearcherExpert(BaseExpert):
|
| 14 |
+
"""Expert specialized in AI research, evaluation, and safety analysis."""
|
| 15 |
+
|
| 16 |
+
def __init__(self):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.domains = ["ai", "ml", "evaluation", "research"]
|
| 19 |
+
self.paper_tool = shared.paper_analysis_tool
|
| 20 |
+
self.experiment_tool = shared.experiment_planner
|
| 21 |
+
self.safety_tool = shared.safety_checker
|
| 22 |
+
self.shared_memory = shared.memory
|
| 23 |
+
self.chain_tracker = ChainTracker()
|
| 24 |
+
|
| 25 |
+
def handle_task(self, task: Dict[str, Any], context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
|
| 26 |
+
"""
|
| 27 |
+
Handle an AI research task by analyzing, planning experiments, and checking safety.
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
task: Task description and parameters
|
| 31 |
+
context: Optional context information
|
| 32 |
+
|
| 33 |
+
Returns:
|
| 34 |
+
Dict containing the research analysis results
|
| 35 |
+
"""
|
| 36 |
+
# Query shared memory for relevant context
|
| 37 |
+
memory_context = self.shared_memory.query(task)
|
| 38 |
+
|
| 39 |
+
# Analyze research papers
|
| 40 |
+
paper_analysis = self.paper_tool.extract_concepts(task)
|
| 41 |
+
|
| 42 |
+
# Design experiments
|
| 43 |
+
experiment_plan = self.experiment_tool.design_experiment(task)
|
| 44 |
+
|
| 45 |
+
# Check safety implications
|
| 46 |
+
safety_assessment = self.safety_tool.assess_risk(task)
|
| 47 |
+
|
| 48 |
+
# Combine results using research methodology
|
| 49 |
+
combined_result = self._synthesize_research(
|
| 50 |
+
paper_analysis,
|
| 51 |
+
experiment_plan,
|
| 52 |
+
safety_assessment,
|
| 53 |
+
memory_context
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Log the research chain
|
| 57 |
+
self.chain_tracker.log_chain(
|
| 58 |
+
task=task,
|
| 59 |
+
paper_results=paper_analysis,
|
| 60 |
+
experiment_plan=experiment_plan,
|
| 61 |
+
safety_assessment=safety_assessment,
|
| 62 |
+
final_result=combined_result
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
return combined_result
|
| 66 |
+
|
| 67 |
+
def _synthesize_research(self, paper: Dict, experiment: Dict, safety: Dict, memory: Dict) -> Dict:
|
| 68 |
+
"""Combine research results into a comprehensive analysis."""
|
| 69 |
+
research_result = {
|
| 70 |
+
"paper_analysis": paper,
|
| 71 |
+
"experiment_design": experiment,
|
| 72 |
+
"safety_assessment": safety,
|
| 73 |
+
"context": memory,
|
| 74 |
+
"research_conclusion": self._generate_conclusion(paper, experiment, safety)
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
return research_result
|
| 78 |
+
|
| 79 |
+
def _generate_conclusion(self, paper: Dict, experiment: Dict, safety: Dict) -> str:
|
| 80 |
+
"""Generate a comprehensive research conclusion."""
|
| 81 |
+
return """Research Conclusion:
|
| 82 |
+
- Key Findings: {}
|
| 83 |
+
- Experiment Design: {}
|
| 84 |
+
- Safety Implications: {}
|
| 85 |
+
- Next Steps: {}""".format(
|
| 86 |
+
self._summarize_findings(paper),
|
| 87 |
+
self._describe_experiment(experiment),
|
| 88 |
+
self._summarize_safety(safety),
|
| 89 |
+
self._recommend_next_steps(paper, experiment, safety)
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
def _summarize_findings(self, paper: Dict) -> str:
|
| 93 |
+
"""Summarize key findings from paper analysis."""
|
| 94 |
+
return "Key findings from the analysis"
|
| 95 |
+
|
| 96 |
+
def _describe_experiment(self, experiment: Dict) -> str:
|
| 97 |
+
"""Describe the proposed experiment design."""
|
| 98 |
+
return "Experiment design details"
|
| 99 |
+
|
| 100 |
+
def _summarize_safety(self, safety: Dict) -> str:
|
| 101 |
+
"""Summarize safety implications."""
|
| 102 |
+
return "Safety assessment summary"
|
| 103 |
+
|
| 104 |
+
def _recommend_next_steps(self, paper: Dict, experiment: Dict, safety: Dict) -> str:
|
| 105 |
+
"""Recommend next steps based on analysis."""
|
| 106 |
+
return "Recommended next steps for research"
|
ai_researcher/domain.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
AIResearcherDomain: Defines the capabilities and scope of the AI researcher expert.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import List, Dict
|
| 6 |
+
from experts.domain import DomainBase
|
| 7 |
+
|
| 8 |
+
class AIResearcherDomain(DomainBase):
|
| 9 |
+
"""Domain definition for AI research and evaluation."""
|
| 10 |
+
|
| 11 |
+
def __init__(self):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.name = "ai_researcher"
|
| 14 |
+
self.capabilities = [
|
| 15 |
+
"model evaluation",
|
| 16 |
+
"experiment design",
|
| 17 |
+
"safety assessment",
|
| 18 |
+
"research methodology",
|
| 19 |
+
"paper analysis",
|
| 20 |
+
"architecture evaluation",
|
| 21 |
+
"performance benchmarking",
|
| 22 |
+
"risk assessment"
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
def get_task_examples(self) -> List[Dict[str, str]]:
|
| 26 |
+
"""Get example tasks for this domain."""
|
| 27 |
+
return [
|
| 28 |
+
{
|
| 29 |
+
"description": "Evaluate model safety in healthcare applications",
|
| 30 |
+
"input": "Analyze GPT-based agent for medical diagnosis",
|
| 31 |
+
"output": "Safety assessment and risk mitigation plan"
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"description": "Design attention mechanism experiment",
|
| 35 |
+
"input": "Test attention head redundancy in transformer models",
|
| 36 |
+
"output": "Experimental design and expected outcomes"
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"description": "Analyze model architecture",
|
| 40 |
+
"input": "Evaluate transformer architecture for time series prediction",
|
| 41 |
+
"output": "Architecture analysis and optimization suggestions"
|
| 42 |
+
}
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
def get_description(self) -> str:
|
| 46 |
+
"""Get domain description."""
|
| 47 |
+
return """The AI Researcher domain focuses on advanced AI/ML research tasks, including:
|
| 48 |
+
- Model evaluation and benchmarking
|
| 49 |
+
- Experiment design and methodology
|
| 50 |
+
- Safety and risk assessment
|
| 51 |
+
- Architecture analysis
|
| 52 |
+
- Research paper evaluation
|
| 53 |
+
- Performance optimization
|
| 54 |
+
- Ethical considerations
|
| 55 |
+
- Research methodology development"""
|
ai_researcher/memory.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Memory management for AI research tasks.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import Dict, Any, List
|
| 6 |
+
from experts.shared_memory import SharedMemory
|
| 7 |
+
from experts.shared import shared
|
| 8 |
+
|
| 9 |
+
class AIResearcherMemoryManager:
|
| 10 |
+
"""Memory manager specialized for AI research."""
|
| 11 |
+
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.shared_memory = shared.memory
|
| 14 |
+
|
| 15 |
+
def store_research(self, research: Dict[str, Any], metadata: Dict[str, Any]) -> None:
|
| 16 |
+
"""Store research findings with metadata."""
|
| 17 |
+
self.shared_memory.store(
|
| 18 |
+
content=research,
|
| 19 |
+
metadata={
|
| 20 |
+
**metadata,
|
| 21 |
+
"domain": "ai_research",
|
| 22 |
+
"type": "research_result",
|
| 23 |
+
"confidence": research.get("confidence", 0.5)
|
| 24 |
+
}
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def query(self, task: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 28 |
+
"""Query relevant research findings from memory."""
|
| 29 |
+
return self.shared_memory.query(
|
| 30 |
+
query=task,
|
| 31 |
+
filter={
|
| 32 |
+
"domain": "ai_research",
|
| 33 |
+
"type": "research_result"
|
| 34 |
+
}
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
def add_citation(self, citation: Dict[str, Any], tags: List[str]) -> None:
|
| 38 |
+
"""Add research citation with tags."""
|
| 39 |
+
self.shared_memory.store(
|
| 40 |
+
content=citation,
|
| 41 |
+
metadata={
|
| 42 |
+
"domain": "ai_research",
|
| 43 |
+
"type": "citation",
|
| 44 |
+
"tags": tags
|
| 45 |
+
}
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def get_similar_research(self, query: str, top_k: int = 5) -> List[Dict[str, Any]]:
|
| 49 |
+
"""Retrieve similar research findings."""
|
| 50 |
+
return self.shared_memory.get_similar(
|
| 51 |
+
query=query,
|
| 52 |
+
filter={"domain": "ai_research"},
|
| 53 |
+
top_k=top_k
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
def track_experiment(self, experiment: Dict[str, Any]) -> None:
|
| 57 |
+
"""Track experiment progress and results."""
|
| 58 |
+
self.shared_memory.store(
|
| 59 |
+
content=experiment,
|
| 60 |
+
metadata={
|
| 61 |
+
"domain": "ai_research",
|
| 62 |
+
"type": "experiment",
|
| 63 |
+
"status": experiment.get("status", "planned")
|
| 64 |
+
}
|
| 65 |
+
)
|
ai_researcher/prompts/base_prompt.txt
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
You are an AI Researcher expert, capable of analyzing, designing, and evaluating AI/ML systems. Your task is to approach the given problem using a scientific research methodology:
|
| 2 |
+
|
| 3 |
+
1. Research Analysis:
|
| 4 |
+
- Identify key concepts and findings
|
| 5 |
+
- Evaluate methodology and assumptions
|
| 6 |
+
- Consider theoretical implications
|
| 7 |
+
|
| 8 |
+
2. Experiment Design:
|
| 9 |
+
- Formulate clear hypotheses
|
| 10 |
+
- Design appropriate controls
|
| 11 |
+
- Select relevant metrics
|
| 12 |
+
- Consider ethical implications
|
| 13 |
+
|
| 14 |
+
3. Safety Assessment:
|
| 15 |
+
- Identify potential risks
|
| 16 |
+
- Evaluate mitigation strategies
|
| 17 |
+
- Consider long-term implications
|
| 18 |
+
- Assess ethical considerations
|
| 19 |
+
|
| 20 |
+
4. Model Evaluation:
|
| 21 |
+
- Analyze architecture
|
| 22 |
+
- Evaluate performance
|
| 23 |
+
- Consider scalability
|
| 24 |
+
- Assess robustness
|
| 25 |
+
|
| 26 |
+
Remember to:
|
| 27 |
+
- Use shared research findings
|
| 28 |
+
- Consider previous experiments
|
| 29 |
+
- Provide clear methodology
|
| 30 |
+
- Include relevant citations
|
| 31 |
+
- Generate reproducible results
|
| 32 |
+
- Consider ethical implications
|
ai_researcher/prompts/config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_config": {
|
| 3 |
+
"temperature": 0.65,
|
| 4 |
+
"max_tokens": 4096,
|
| 5 |
+
"top_p": 0.9,
|
| 6 |
+
"top_k": 50,
|
| 7 |
+
"presence_penalty": 0.3,
|
| 8 |
+
"frequency_penalty": 0.3
|
| 9 |
+
},
|
| 10 |
+
"memory_config": {
|
| 11 |
+
"max_history": 20,
|
| 12 |
+
"similarity_threshold": 0.75,
|
| 13 |
+
"context_window": 1000,
|
| 14 |
+
"citation_tracking": true
|
| 15 |
+
},
|
| 16 |
+
"domain_config": {
|
| 17 |
+
"research_weight": 0.4,
|
| 18 |
+
"experiment_weight": 0.3,
|
| 19 |
+
"safety_weight": 0.2,
|
| 20 |
+
"context_weight": 0.1
|
| 21 |
+
}
|
| 22 |
+
}
|
ai_researcher/prompts/examples.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"examples": [
|
| 3 |
+
{
|
| 4 |
+
"task": "Evaluate the safety implications of using GPT-based agents in healthcare",
|
| 5 |
+
"domain": "ai_research",
|
| 6 |
+
"input": {
|
| 7 |
+
"model_type": "GPT-3.5",
|
| 8 |
+
"application": "medical diagnosis",
|
| 9 |
+
"risk_factors": ["misdiagnosis", "privacy", "bias"]
|
| 10 |
+
},
|
| 11 |
+
"output": {
|
| 12 |
+
"analysis": {
|
| 13 |
+
"safety_concerns": [
|
| 14 |
+
"Misdiagnosis risk",
|
| 15 |
+
"Data privacy violations",
|
| 16 |
+
"Bias amplification"
|
| 17 |
+
],
|
| 18 |
+
"mitigation_strategies": {
|
| 19 |
+
"verification_system": "Dual-check diagnosis",
|
| 20 |
+
"privacy_controls": "Differential privacy",
|
| 21 |
+
"bias_reduction": "Regular audits"
|
| 22 |
+
}
|
| 23 |
+
},
|
| 24 |
+
"confidence": 0.85,
|
| 25 |
+
"recommendations": [
|
| 26 |
+
"Implement verification layer",
|
| 27 |
+
"Conduct regular bias audits",
|
| 28 |
+
"Establish privacy protocols"
|
| 29 |
+
]
|
| 30 |
+
}
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"task": "Design an experiment to test attention-head redundancy in transformer models",
|
| 34 |
+
"domain": "ai_research",
|
| 35 |
+
"input": {
|
| 36 |
+
"model_architecture": "Transformer",
|
| 37 |
+
"hypothesis": "Attention heads exhibit redundancy",
|
| 38 |
+
"metrics": ["performance", "computational_efficiency", "robustness"]
|
| 39 |
+
},
|
| 40 |
+
"output": {
|
| 41 |
+
"experiment_design": {
|
| 42 |
+
"hypothesis": "Attention heads in transformer models exhibit significant redundancy",
|
| 43 |
+
"method": {
|
| 44 |
+
"approach": "Head ablation study",
|
| 45 |
+
"controls": ["random ablation", "sequential ablation"],
|
| 46 |
+
"metrics": {
|
| 47 |
+
"primary": "model performance",
|
| 48 |
+
"secondary": ["inference speed", "memory usage"]
|
| 49 |
+
}
|
| 50 |
+
},
|
| 51 |
+
"expected_results": {
|
| 52 |
+
"performance_drop": "<10%",
|
| 53 |
+
"speed_improvement": ">15%",
|
| 54 |
+
"memory_reduction": ">20%"
|
| 55 |
+
}
|
| 56 |
+
},
|
| 57 |
+
"confidence": 0.8,
|
| 58 |
+
"ethical_considerations": "None significant"
|
| 59 |
+
}
|
| 60 |
+
}
|
| 61 |
+
]
|
| 62 |
+
}
|
ai_researcher/tools.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Tools for AI research and evaluation tasks.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import Dict, Any
|
| 6 |
+
from experts.tools import ToolBase
|
| 7 |
+
from experts.shared import shared
|
| 8 |
+
|
| 9 |
+
class PaperAnalysisTool(ToolBase):
|
| 10 |
+
"""Tool for analyzing research papers."""
|
| 11 |
+
|
| 12 |
+
def extract_concepts(self, task: Dict[str, Any]) -> Dict[str, Any]:
|
| 13 |
+
"""Extract key concepts and findings from research papers."""
|
| 14 |
+
# Placeholder - would use shared.paper_analysis_tool in production
|
| 15 |
+
result = {
|
| 16 |
+
"key_concepts": [],
|
| 17 |
+
"methodology": {},
|
| 18 |
+
"findings": {},
|
| 19 |
+
"limitations": [],
|
| 20 |
+
"confidence": 0.85,
|
| 21 |
+
"relevance": 0.9
|
| 22 |
+
}
|
| 23 |
+
return result
|
| 24 |
+
|
| 25 |
+
class ExperimentPlanner(ToolBase):
|
| 26 |
+
"""Tool for designing research experiments."""
|
| 27 |
+
|
| 28 |
+
def design_experiment(self, task: Dict[str, Any]) -> Dict[str, Any]:
|
| 29 |
+
"""Design a research experiment based on task requirements."""
|
| 30 |
+
# Placeholder - would use shared.experiment_planner in production
|
| 31 |
+
result = {
|
| 32 |
+
"hypothesis": "",
|
| 33 |
+
"method": {},
|
| 34 |
+
"metrics": [],
|
| 35 |
+
"controls": [],
|
| 36 |
+
"expected_results": {},
|
| 37 |
+
"confidence": 0.8,
|
| 38 |
+
"complexity": "medium"
|
| 39 |
+
}
|
| 40 |
+
return result
|
| 41 |
+
|
| 42 |
+
class SafetyChecker(ToolBase):
|
| 43 |
+
"""Tool for assessing safety implications."""
|
| 44 |
+
|
| 45 |
+
def assess_risk(self, task: Dict[str, Any]) -> Dict[str, Any]:
|
| 46 |
+
"""Assess safety and risk implications of AI systems."""
|
| 47 |
+
# Placeholder - would use shared.safety_checker in production
|
| 48 |
+
result = {
|
| 49 |
+
"risks": [],
|
| 50 |
+
"safety_measures": [],
|
| 51 |
+
"impact_assessment": {},
|
| 52 |
+
"confidence": 0.75,
|
| 53 |
+
"recommendations": []
|
| 54 |
+
}
|
| 55 |
+
return result
|
quantitative_analyst/__init__.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Initialize the quantitative analyst expert module.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from .quantitative_analyst_expert import QuantitativeAnalystExpert
|
| 6 |
+
from experts.registry import registry
|
| 7 |
+
|
| 8 |
+
# Register the expert with the global registry
|
| 9 |
+
registry.register(QuantitativeAnalystExpert())
|
quantitative_analyst/domain.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
QuantitativeAnalystDomain: Defines the capabilities and scope of the quantitative analyst expert.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import List, Dict
|
| 6 |
+
from experts.domain import DomainBase
|
| 7 |
+
|
| 8 |
+
class QuantitativeAnalystDomain(DomainBase):
|
| 9 |
+
"""Domain definition for quantitative analysis."""
|
| 10 |
+
|
| 11 |
+
def __init__(self):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.name = "quantitative_analyst"
|
| 14 |
+
self.capabilities = [
|
| 15 |
+
"financial modeling",
|
| 16 |
+
"algorithmic trading strategy",
|
| 17 |
+
"statistical analysis",
|
| 18 |
+
"portfolio optimization",
|
| 19 |
+
"risk assessment",
|
| 20 |
+
"quantitative research"
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
def get_task_examples(self) -> List[Dict[str, str]]:
|
| 24 |
+
"""Get example tasks for this domain."""
|
| 25 |
+
return [
|
| 26 |
+
{
|
| 27 |
+
"description": "Create a Monte Carlo simulation for stock price forecasting",
|
| 28 |
+
"input": "Simulate daily stock prices for the next 30 days using historical volatility",
|
| 29 |
+
"output": "Python code for Monte Carlo simulation with statistical analysis"
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"description": "Optimize a portfolio using mean-variance optimization",
|
| 33 |
+
"input": "Maximize returns while keeping risk below 10%",
|
| 34 |
+
"output": "Optimal portfolio weights and risk metrics"
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"description": "Implement a mean-reversion trading strategy",
|
| 38 |
+
"input": "Design a strategy that profits from price deviations",
|
| 39 |
+
"output": "Trading algorithm with risk management"
|
| 40 |
+
}
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
def get_description(self) -> str:
|
| 44 |
+
"""Get domain description."""
|
| 45 |
+
return """The Quantitative Analyst domain focuses on solving complex problems that require
|
| 46 |
+
integration of mathematical analysis, financial understanding, and code generation.
|
| 47 |
+
It's particularly suited for tasks involving:
|
| 48 |
+
- Financial modeling and simulation
|
| 49 |
+
- Algorithmic trading strategies
|
| 50 |
+
- Portfolio optimization
|
| 51 |
+
- Risk assessment
|
| 52 |
+
- Statistical analysis of financial data
|
| 53 |
+
- Quantitative research methods"""
|
quantitative_analyst/memory.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Memory management for quantitative analysis tasks.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import Dict, Any, List
|
| 6 |
+
from experts.shared_memory import SharedMemory
|
| 7 |
+
from experts.shared import shared
|
| 8 |
+
|
| 9 |
+
class QuantAnalystMemoryManager:
|
| 10 |
+
"""Memory manager specialized for quantitative analysis."""
|
| 11 |
+
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.shared_memory = shared.memory
|
| 14 |
+
|
| 15 |
+
def store_analysis(self, analysis: Dict[str, Any], metadata: Dict[str, Any]) -> None:
|
| 16 |
+
"""Store quantitative analysis results with metadata."""
|
| 17 |
+
self.shared_memory.store(
|
| 18 |
+
content=analysis,
|
| 19 |
+
metadata={
|
| 20 |
+
**metadata,
|
| 21 |
+
"domain": "quantitative_analysis",
|
| 22 |
+
"type": "analysis_result"
|
| 23 |
+
}
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
def query(self, task: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 27 |
+
"""Query relevant analysis results from memory."""
|
| 28 |
+
return self.shared_memory.query(
|
| 29 |
+
query=task,
|
| 30 |
+
filter={
|
| 31 |
+
"domain": "quantitative_analysis",
|
| 32 |
+
"type": "analysis_result"
|
| 33 |
+
}
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
def add_context(self, context: Dict[str, Any], tags: List[str]) -> None:
|
| 37 |
+
"""Add contextual information with tags."""
|
| 38 |
+
self.shared_memory.store(
|
| 39 |
+
content=context,
|
| 40 |
+
metadata={
|
| 41 |
+
"domain": "quantitative_analysis",
|
| 42 |
+
"type": "context",
|
| 43 |
+
"tags": tags
|
| 44 |
+
}
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
def get_similar_analyses(self, query: str, top_k: int = 5) -> List[Dict[str, Any]]:
|
| 48 |
+
"""Retrieve similar analysis results."""
|
| 49 |
+
return self.shared_memory.get_similar(
|
| 50 |
+
query=query,
|
| 51 |
+
filter={"domain": "quantitative_analysis"},
|
| 52 |
+
top_k=top_k
|
| 53 |
+
)
|
quantitative_analyst/prompts/base_prompt.txt
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
You are a Quantitative Analyst expert, capable of blending mathematical analysis, financial understanding, and code generation to solve complex problems. Your task is to analyze the given problem using a multi-domain approach:
|
| 2 |
+
|
| 3 |
+
1. Mathematical Analysis:
|
| 4 |
+
- Identify underlying mathematical patterns
|
| 5 |
+
- Perform statistical analysis
|
| 6 |
+
- Consider computational complexity
|
| 7 |
+
|
| 8 |
+
2. Financial Context:
|
| 9 |
+
- Evaluate financial implications
|
| 10 |
+
- Consider market conditions
|
| 11 |
+
- Assess risk and return
|
| 12 |
+
|
| 13 |
+
3. Code Implementation:
|
| 14 |
+
- Generate efficient code
|
| 15 |
+
- Consider performance
|
| 16 |
+
- Include proper documentation
|
| 17 |
+
|
| 18 |
+
Remember to:
|
| 19 |
+
- Use shared memory for context
|
| 20 |
+
- Consider previous analyses
|
| 21 |
+
- Provide clear explanations
|
| 22 |
+
- Include relevant calculations
|
| 23 |
+
- Generate well-documented code
|
quantitative_analyst/prompts/config.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_config": {
|
| 3 |
+
"temperature": 0.7,
|
| 4 |
+
"max_tokens": 2048,
|
| 5 |
+
"top_p": 0.9,
|
| 6 |
+
"top_k": 50,
|
| 7 |
+
"presence_penalty": 0.2,
|
| 8 |
+
"frequency_penalty": 0.2
|
| 9 |
+
},
|
| 10 |
+
"memory_config": {
|
| 11 |
+
"max_history": 10,
|
| 12 |
+
"similarity_threshold": 0.7,
|
| 13 |
+
"context_window": 500
|
| 14 |
+
},
|
| 15 |
+
"domain_config": {
|
| 16 |
+
"math_weight": 0.4,
|
| 17 |
+
"finance_weight": 0.4,
|
| 18 |
+
"code_weight": 0.2,
|
| 19 |
+
"context_weight": 0.1
|
| 20 |
+
}
|
| 21 |
+
}
|
quantitative_analyst/prompts/examples.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"examples": [
|
| 3 |
+
{
|
| 4 |
+
"task": "Create a Monte Carlo simulation for stock price forecasting",
|
| 5 |
+
"domain": "quantitative_analysis",
|
| 6 |
+
"input": {
|
| 7 |
+
"historical_data": "3 years of daily closing prices",
|
| 8 |
+
"forecast_period": "30 days",
|
| 9 |
+
"volatility_method": "historical"
|
| 10 |
+
},
|
| 11 |
+
"output": {
|
| 12 |
+
"code": """import numpy as np\nimport pandas as pd\n\ndef monte_carlo_simulation(prices, days=30, simulations=1000):\n # Calculate returns\n returns = prices.pct_change().dropna()\n mean_return = returns.mean()\n std_dev = returns.std()\n \n # Generate random returns\n random_returns = np.random.normal(mean_return, std_dev, (days, simulations))\n \n # Calculate future prices\n last_price = prices.iloc[-1]\n future_prices = last_price * (1 + random_returns).cumprod()\n \n return future_prices\n""",
|
| 13 |
+
"analysis": {
|
| 14 |
+
"confidence": 0.85,
|
| 15 |
+
"risk_profile": "moderate",
|
| 16 |
+
"computational_complexity": "medium"
|
| 17 |
+
}
|
| 18 |
+
}
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"task": "Optimize a portfolio using mean-variance optimization",
|
| 22 |
+
"domain": "quantitative_analysis",
|
| 23 |
+
"input": {
|
| 24 |
+
"assets": ["AAPL", "GOOGL", "MSFT", "AMZN"],
|
| 25 |
+
"risk_tolerance": 0.1,
|
| 26 |
+
"expected_returns": [0.12, 0.15, 0.10, 0.13]
|
| 27 |
+
},
|
| 28 |
+
"output": {
|
| 29 |
+
"code": """import numpy as np\nimport cvxpy as cp\n\ndef optimize_portfolio(returns, risk_tolerance):\n n = len(returns)\n weights = cp.Variable(n)\n \n # Objective: maximize return\n objective = cp.Maximize(returns @ weights)\n \n # Constraints: sum of weights = 1, risk <= tolerance\n constraints = [cp.sum(weights) == 1,\n cp.quad_form(weights, np.cov(returns)) <= risk_tolerance]\n \n prob = cp.Problem(objective, constraints)\n prob.solve()\n \n return weights.value\n""",
|
| 30 |
+
"analysis": {
|
| 31 |
+
"confidence": 0.9,
|
| 32 |
+
"risk_profile": "low",
|
| 33 |
+
"computational_complexity": "high"
|
| 34 |
+
}
|
| 35 |
+
}
|
| 36 |
+
}
|
| 37 |
+
]
|
| 38 |
+
}
|
quantitative_analyst/quantitative_analyst_expert.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
QuantitativeAnalystExpert: A specialized expert that blends math, finance, and code domains
|
| 3 |
+
for solving complex quantitative analysis tasks.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from typing import Dict, Any, Optional
|
| 7 |
+
from experts.base_expert import BaseExpert
|
| 8 |
+
from experts.domain import DomainBase
|
| 9 |
+
from experts.tools import ToolBase
|
| 10 |
+
from experts.shared import shared
|
| 11 |
+
from experts.chain_tracker import ChainTracker
|
| 12 |
+
from experts.shared_memory import SharedMemory
|
| 13 |
+
|
| 14 |
+
class QuantitativeAnalystExpert(BaseExpert):
|
| 15 |
+
"""Expert specialized in quantitative analysis tasks."""
|
| 16 |
+
|
| 17 |
+
def __init__(self):
|
| 18 |
+
super().__init__()
|
| 19 |
+
self.domains = ["math", "finance", "code"]
|
| 20 |
+
self.math_module = shared.math_module
|
| 21 |
+
self.finance_module = shared.finance_module
|
| 22 |
+
self.codegen_tool = shared.codegen_tool
|
| 23 |
+
self.shared_memory = shared.memory
|
| 24 |
+
self.chain_tracker = ChainTracker()
|
| 25 |
+
|
| 26 |
+
def handle_task(self, task: Dict[str, Any], context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
|
| 27 |
+
"""
|
| 28 |
+
Handle a quantitative analysis task by blending math, finance, and code domains.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
task: Task description and parameters
|
| 32 |
+
context: Optional context information
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
Dict containing the blended analysis results
|
| 36 |
+
"""
|
| 37 |
+
# Query shared memory for relevant context
|
| 38 |
+
memory_context = self.shared_memory.query(task)
|
| 39 |
+
|
| 40 |
+
# Analyze math components
|
| 41 |
+
math_analysis = self.math_module.analyze(task)
|
| 42 |
+
|
| 43 |
+
# Evaluate financial aspects
|
| 44 |
+
finance_evaluation = self.finance_module.evaluate(task)
|
| 45 |
+
|
| 46 |
+
# Generate necessary code
|
| 47 |
+
code_generation = self.codegen_tool.generate_code(task)
|
| 48 |
+
|
| 49 |
+
# Combine results using blended reasoning
|
| 50 |
+
combined_result = self._blend_results(
|
| 51 |
+
math_analysis,
|
| 52 |
+
finance_evaluation,
|
| 53 |
+
code_generation,
|
| 54 |
+
memory_context
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Log the chain of reasoning
|
| 58 |
+
self.chain_tracker.log_chain(
|
| 59 |
+
task=task,
|
| 60 |
+
math_result=math_analysis,
|
| 61 |
+
finance_result=finance_evaluation,
|
| 62 |
+
code_result=code_generation,
|
| 63 |
+
final_result=combined_result
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
return combined_result
|
| 67 |
+
|
| 68 |
+
def _blend_results(self, math: Dict, finance: Dict, code: Dict, memory: Dict) -> Dict:
|
| 69 |
+
"""Combine results from different domains."""
|
| 70 |
+
# Implementation of result blending logic
|
| 71 |
+
# This would typically involve:
|
| 72 |
+
# 1. Weighting different domain results
|
| 73 |
+
# 2. Integrating memory context
|
| 74 |
+
# 3. Generating comprehensive analysis
|
| 75 |
+
|
| 76 |
+
blended_result = {
|
| 77 |
+
"math_analysis": math,
|
| 78 |
+
"financial_evaluation": finance,
|
| 79 |
+
"generated_code": code,
|
| 80 |
+
"context": memory,
|
| 81 |
+
"final_recommendation": self._generate_recommendation(math, finance)
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
return blended_result
|
| 85 |
+
|
| 86 |
+
def _generate_recommendation(self, math: Dict, finance: Dict) -> str:
|
| 87 |
+
"""Generate a final recommendation based on math and finance analysis."""
|
| 88 |
+
# This would be implemented based on specific use cases
|
| 89 |
+
return """Based on the quantitative analysis:
|
| 90 |
+
- Mathematical soundness: {}
|
| 91 |
+
- Financial implications: {}
|
| 92 |
+
- Recommended action: {}""".format(
|
| 93 |
+
math.get("confidence", "N/A"),
|
| 94 |
+
finance.get("impact", "N/A"),
|
| 95 |
+
self._determine_action(math, finance)
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
def _determine_action(self, math: Dict, finance: Dict) -> str:
|
| 99 |
+
"""Determine appropriate action based on analysis."""
|
| 100 |
+
# Placeholder for action determination logic
|
| 101 |
+
return "Analyze results and determine appropriate action"
|
quantitative_analyst/tools.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Tools for quantitative analysis tasks.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import Dict, Any
|
| 6 |
+
from experts.tools import ToolBase
|
| 7 |
+
from experts.shared import shared
|
| 8 |
+
|
| 9 |
+
class MathAnalysisTool(ToolBase):
|
| 10 |
+
"""Tool for mathematical analysis."""
|
| 11 |
+
|
| 12 |
+
def analyze(self, task: Dict[str, Any]) -> Dict[str, Any]:
|
| 13 |
+
"""Analyze mathematical components of the task."""
|
| 14 |
+
# Placeholder - would use shared.math_module in production
|
| 15 |
+
result = {
|
| 16 |
+
"analysis": "Mathematical analysis of task components",
|
| 17 |
+
"confidence": 0.9,
|
| 18 |
+
"metrics": {
|
| 19 |
+
"complexity": "medium",
|
| 20 |
+
"computational_effort": "moderate"
|
| 21 |
+
}
|
| 22 |
+
}
|
| 23 |
+
return result
|
| 24 |
+
|
| 25 |
+
class FinanceEvaluationTool(ToolBase):
|
| 26 |
+
"""Tool for financial evaluation."""
|
| 27 |
+
|
| 28 |
+
def evaluate(self, task: Dict[str, Any]) -> Dict[str, Any]:
|
| 29 |
+
"""Evaluate financial aspects of the task."""
|
| 30 |
+
# Placeholder - would use shared.finance_module in production
|
| 31 |
+
result = {
|
| 32 |
+
"evaluation": "Financial impact assessment",
|
| 33 |
+
"risk_profile": "moderate",
|
| 34 |
+
"return_potential": "high",
|
| 35 |
+
"confidence": 0.85
|
| 36 |
+
}
|
| 37 |
+
return result
|
| 38 |
+
|
| 39 |
+
class CodeGenerationTool(ToolBase):
|
| 40 |
+
"""Tool for code generation."""
|
| 41 |
+
|
| 42 |
+
def generate_code(self, task: Dict[str, Any]) -> Dict[str, Any]:
|
| 43 |
+
"""Generate code to implement the solution."""
|
| 44 |
+
# Placeholder - would use shared.codegen_tool in production
|
| 45 |
+
result = {
|
| 46 |
+
"code": "# Python code implementation",
|
| 47 |
+
"language": "python",
|
| 48 |
+
"dependencies": ["numpy", "pandas", "scipy"],
|
| 49 |
+
"complexity": "medium"
|
| 50 |
+
}
|
| 51 |
+
return result
|