hollywoodfrancis commited on
Commit
b3e9d26
·
verified ·
1 Parent(s): b8ab4a2

Upload 16 files

Browse files
ai_researcher/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Initialize the AI Researcher expert module.
3
+ """
4
+
5
+ from .ai_researcher_expert import AIResearcherExpert
6
+ from experts.registry import registry
7
+
8
+ # Register the expert with the global registry
9
+ registry.register(AIResearcherExpert())
ai_researcher/ai_researcher_expert.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ AIResearcherExpert: A specialized expert for AI/ML research, evaluation, and safety analysis.
3
+ """
4
+
5
+ from typing import Dict, Any, Optional
6
+ from experts.base_expert import BaseExpert
7
+ from experts.domain import DomainBase
8
+ from experts.tools import ToolBase
9
+ from experts.shared import shared
10
+ from experts.chain_tracker import ChainTracker
11
+ from experts.shared_memory import SharedMemory
12
+
13
+ class AIResearcherExpert(BaseExpert):
14
+ """Expert specialized in AI research, evaluation, and safety analysis."""
15
+
16
+ def __init__(self):
17
+ super().__init__()
18
+ self.domains = ["ai", "ml", "evaluation", "research"]
19
+ self.paper_tool = shared.paper_analysis_tool
20
+ self.experiment_tool = shared.experiment_planner
21
+ self.safety_tool = shared.safety_checker
22
+ self.shared_memory = shared.memory
23
+ self.chain_tracker = ChainTracker()
24
+
25
+ def handle_task(self, task: Dict[str, Any], context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
26
+ """
27
+ Handle an AI research task by analyzing, planning experiments, and checking safety.
28
+
29
+ Args:
30
+ task: Task description and parameters
31
+ context: Optional context information
32
+
33
+ Returns:
34
+ Dict containing the research analysis results
35
+ """
36
+ # Query shared memory for relevant context
37
+ memory_context = self.shared_memory.query(task)
38
+
39
+ # Analyze research papers
40
+ paper_analysis = self.paper_tool.extract_concepts(task)
41
+
42
+ # Design experiments
43
+ experiment_plan = self.experiment_tool.design_experiment(task)
44
+
45
+ # Check safety implications
46
+ safety_assessment = self.safety_tool.assess_risk(task)
47
+
48
+ # Combine results using research methodology
49
+ combined_result = self._synthesize_research(
50
+ paper_analysis,
51
+ experiment_plan,
52
+ safety_assessment,
53
+ memory_context
54
+ )
55
+
56
+ # Log the research chain
57
+ self.chain_tracker.log_chain(
58
+ task=task,
59
+ paper_results=paper_analysis,
60
+ experiment_plan=experiment_plan,
61
+ safety_assessment=safety_assessment,
62
+ final_result=combined_result
63
+ )
64
+
65
+ return combined_result
66
+
67
+ def _synthesize_research(self, paper: Dict, experiment: Dict, safety: Dict, memory: Dict) -> Dict:
68
+ """Combine research results into a comprehensive analysis."""
69
+ research_result = {
70
+ "paper_analysis": paper,
71
+ "experiment_design": experiment,
72
+ "safety_assessment": safety,
73
+ "context": memory,
74
+ "research_conclusion": self._generate_conclusion(paper, experiment, safety)
75
+ }
76
+
77
+ return research_result
78
+
79
+ def _generate_conclusion(self, paper: Dict, experiment: Dict, safety: Dict) -> str:
80
+ """Generate a comprehensive research conclusion."""
81
+ return """Research Conclusion:
82
+ - Key Findings: {}
83
+ - Experiment Design: {}
84
+ - Safety Implications: {}
85
+ - Next Steps: {}""".format(
86
+ self._summarize_findings(paper),
87
+ self._describe_experiment(experiment),
88
+ self._summarize_safety(safety),
89
+ self._recommend_next_steps(paper, experiment, safety)
90
+ )
91
+
92
+ def _summarize_findings(self, paper: Dict) -> str:
93
+ """Summarize key findings from paper analysis."""
94
+ return "Key findings from the analysis"
95
+
96
+ def _describe_experiment(self, experiment: Dict) -> str:
97
+ """Describe the proposed experiment design."""
98
+ return "Experiment design details"
99
+
100
+ def _summarize_safety(self, safety: Dict) -> str:
101
+ """Summarize safety implications."""
102
+ return "Safety assessment summary"
103
+
104
+ def _recommend_next_steps(self, paper: Dict, experiment: Dict, safety: Dict) -> str:
105
+ """Recommend next steps based on analysis."""
106
+ return "Recommended next steps for research"
ai_researcher/domain.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ AIResearcherDomain: Defines the capabilities and scope of the AI researcher expert.
3
+ """
4
+
5
+ from typing import List, Dict
6
+ from experts.domain import DomainBase
7
+
8
+ class AIResearcherDomain(DomainBase):
9
+ """Domain definition for AI research and evaluation."""
10
+
11
+ def __init__(self):
12
+ super().__init__()
13
+ self.name = "ai_researcher"
14
+ self.capabilities = [
15
+ "model evaluation",
16
+ "experiment design",
17
+ "safety assessment",
18
+ "research methodology",
19
+ "paper analysis",
20
+ "architecture evaluation",
21
+ "performance benchmarking",
22
+ "risk assessment"
23
+ ]
24
+
25
+ def get_task_examples(self) -> List[Dict[str, str]]:
26
+ """Get example tasks for this domain."""
27
+ return [
28
+ {
29
+ "description": "Evaluate model safety in healthcare applications",
30
+ "input": "Analyze GPT-based agent for medical diagnosis",
31
+ "output": "Safety assessment and risk mitigation plan"
32
+ },
33
+ {
34
+ "description": "Design attention mechanism experiment",
35
+ "input": "Test attention head redundancy in transformer models",
36
+ "output": "Experimental design and expected outcomes"
37
+ },
38
+ {
39
+ "description": "Analyze model architecture",
40
+ "input": "Evaluate transformer architecture for time series prediction",
41
+ "output": "Architecture analysis and optimization suggestions"
42
+ }
43
+ ]
44
+
45
+ def get_description(self) -> str:
46
+ """Get domain description."""
47
+ return """The AI Researcher domain focuses on advanced AI/ML research tasks, including:
48
+ - Model evaluation and benchmarking
49
+ - Experiment design and methodology
50
+ - Safety and risk assessment
51
+ - Architecture analysis
52
+ - Research paper evaluation
53
+ - Performance optimization
54
+ - Ethical considerations
55
+ - Research methodology development"""
ai_researcher/memory.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Memory management for AI research tasks.
3
+ """
4
+
5
+ from typing import Dict, Any, List
6
+ from experts.shared_memory import SharedMemory
7
+ from experts.shared import shared
8
+
9
+ class AIResearcherMemoryManager:
10
+ """Memory manager specialized for AI research."""
11
+
12
+ def __init__(self):
13
+ self.shared_memory = shared.memory
14
+
15
+ def store_research(self, research: Dict[str, Any], metadata: Dict[str, Any]) -> None:
16
+ """Store research findings with metadata."""
17
+ self.shared_memory.store(
18
+ content=research,
19
+ metadata={
20
+ **metadata,
21
+ "domain": "ai_research",
22
+ "type": "research_result",
23
+ "confidence": research.get("confidence", 0.5)
24
+ }
25
+ )
26
+
27
+ def query(self, task: Dict[str, Any]) -> List[Dict[str, Any]]:
28
+ """Query relevant research findings from memory."""
29
+ return self.shared_memory.query(
30
+ query=task,
31
+ filter={
32
+ "domain": "ai_research",
33
+ "type": "research_result"
34
+ }
35
+ )
36
+
37
+ def add_citation(self, citation: Dict[str, Any], tags: List[str]) -> None:
38
+ """Add research citation with tags."""
39
+ self.shared_memory.store(
40
+ content=citation,
41
+ metadata={
42
+ "domain": "ai_research",
43
+ "type": "citation",
44
+ "tags": tags
45
+ }
46
+ )
47
+
48
+ def get_similar_research(self, query: str, top_k: int = 5) -> List[Dict[str, Any]]:
49
+ """Retrieve similar research findings."""
50
+ return self.shared_memory.get_similar(
51
+ query=query,
52
+ filter={"domain": "ai_research"},
53
+ top_k=top_k
54
+ )
55
+
56
+ def track_experiment(self, experiment: Dict[str, Any]) -> None:
57
+ """Track experiment progress and results."""
58
+ self.shared_memory.store(
59
+ content=experiment,
60
+ metadata={
61
+ "domain": "ai_research",
62
+ "type": "experiment",
63
+ "status": experiment.get("status", "planned")
64
+ }
65
+ )
ai_researcher/prompts/base_prompt.txt ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ You are an AI Researcher expert, capable of analyzing, designing, and evaluating AI/ML systems. Your task is to approach the given problem using a scientific research methodology:
2
+
3
+ 1. Research Analysis:
4
+ - Identify key concepts and findings
5
+ - Evaluate methodology and assumptions
6
+ - Consider theoretical implications
7
+
8
+ 2. Experiment Design:
9
+ - Formulate clear hypotheses
10
+ - Design appropriate controls
11
+ - Select relevant metrics
12
+ - Consider ethical implications
13
+
14
+ 3. Safety Assessment:
15
+ - Identify potential risks
16
+ - Evaluate mitigation strategies
17
+ - Consider long-term implications
18
+ - Assess ethical considerations
19
+
20
+ 4. Model Evaluation:
21
+ - Analyze architecture
22
+ - Evaluate performance
23
+ - Consider scalability
24
+ - Assess robustness
25
+
26
+ Remember to:
27
+ - Use shared research findings
28
+ - Consider previous experiments
29
+ - Provide clear methodology
30
+ - Include relevant citations
31
+ - Generate reproducible results
32
+ - Consider ethical implications
ai_researcher/prompts/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_config": {
3
+ "temperature": 0.65,
4
+ "max_tokens": 4096,
5
+ "top_p": 0.9,
6
+ "top_k": 50,
7
+ "presence_penalty": 0.3,
8
+ "frequency_penalty": 0.3
9
+ },
10
+ "memory_config": {
11
+ "max_history": 20,
12
+ "similarity_threshold": 0.75,
13
+ "context_window": 1000,
14
+ "citation_tracking": true
15
+ },
16
+ "domain_config": {
17
+ "research_weight": 0.4,
18
+ "experiment_weight": 0.3,
19
+ "safety_weight": 0.2,
20
+ "context_weight": 0.1
21
+ }
22
+ }
ai_researcher/prompts/examples.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "examples": [
3
+ {
4
+ "task": "Evaluate the safety implications of using GPT-based agents in healthcare",
5
+ "domain": "ai_research",
6
+ "input": {
7
+ "model_type": "GPT-3.5",
8
+ "application": "medical diagnosis",
9
+ "risk_factors": ["misdiagnosis", "privacy", "bias"]
10
+ },
11
+ "output": {
12
+ "analysis": {
13
+ "safety_concerns": [
14
+ "Misdiagnosis risk",
15
+ "Data privacy violations",
16
+ "Bias amplification"
17
+ ],
18
+ "mitigation_strategies": {
19
+ "verification_system": "Dual-check diagnosis",
20
+ "privacy_controls": "Differential privacy",
21
+ "bias_reduction": "Regular audits"
22
+ }
23
+ },
24
+ "confidence": 0.85,
25
+ "recommendations": [
26
+ "Implement verification layer",
27
+ "Conduct regular bias audits",
28
+ "Establish privacy protocols"
29
+ ]
30
+ }
31
+ },
32
+ {
33
+ "task": "Design an experiment to test attention-head redundancy in transformer models",
34
+ "domain": "ai_research",
35
+ "input": {
36
+ "model_architecture": "Transformer",
37
+ "hypothesis": "Attention heads exhibit redundancy",
38
+ "metrics": ["performance", "computational_efficiency", "robustness"]
39
+ },
40
+ "output": {
41
+ "experiment_design": {
42
+ "hypothesis": "Attention heads in transformer models exhibit significant redundancy",
43
+ "method": {
44
+ "approach": "Head ablation study",
45
+ "controls": ["random ablation", "sequential ablation"],
46
+ "metrics": {
47
+ "primary": "model performance",
48
+ "secondary": ["inference speed", "memory usage"]
49
+ }
50
+ },
51
+ "expected_results": {
52
+ "performance_drop": "<10%",
53
+ "speed_improvement": ">15%",
54
+ "memory_reduction": ">20%"
55
+ }
56
+ },
57
+ "confidence": 0.8,
58
+ "ethical_considerations": "None significant"
59
+ }
60
+ }
61
+ ]
62
+ }
ai_researcher/tools.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tools for AI research and evaluation tasks.
3
+ """
4
+
5
+ from typing import Dict, Any
6
+ from experts.tools import ToolBase
7
+ from experts.shared import shared
8
+
9
+ class PaperAnalysisTool(ToolBase):
10
+ """Tool for analyzing research papers."""
11
+
12
+ def extract_concepts(self, task: Dict[str, Any]) -> Dict[str, Any]:
13
+ """Extract key concepts and findings from research papers."""
14
+ # Placeholder - would use shared.paper_analysis_tool in production
15
+ result = {
16
+ "key_concepts": [],
17
+ "methodology": {},
18
+ "findings": {},
19
+ "limitations": [],
20
+ "confidence": 0.85,
21
+ "relevance": 0.9
22
+ }
23
+ return result
24
+
25
+ class ExperimentPlanner(ToolBase):
26
+ """Tool for designing research experiments."""
27
+
28
+ def design_experiment(self, task: Dict[str, Any]) -> Dict[str, Any]:
29
+ """Design a research experiment based on task requirements."""
30
+ # Placeholder - would use shared.experiment_planner in production
31
+ result = {
32
+ "hypothesis": "",
33
+ "method": {},
34
+ "metrics": [],
35
+ "controls": [],
36
+ "expected_results": {},
37
+ "confidence": 0.8,
38
+ "complexity": "medium"
39
+ }
40
+ return result
41
+
42
+ class SafetyChecker(ToolBase):
43
+ """Tool for assessing safety implications."""
44
+
45
+ def assess_risk(self, task: Dict[str, Any]) -> Dict[str, Any]:
46
+ """Assess safety and risk implications of AI systems."""
47
+ # Placeholder - would use shared.safety_checker in production
48
+ result = {
49
+ "risks": [],
50
+ "safety_measures": [],
51
+ "impact_assessment": {},
52
+ "confidence": 0.75,
53
+ "recommendations": []
54
+ }
55
+ return result
quantitative_analyst/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Initialize the quantitative analyst expert module.
3
+ """
4
+
5
+ from .quantitative_analyst_expert import QuantitativeAnalystExpert
6
+ from experts.registry import registry
7
+
8
+ # Register the expert with the global registry
9
+ registry.register(QuantitativeAnalystExpert())
quantitative_analyst/domain.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ QuantitativeAnalystDomain: Defines the capabilities and scope of the quantitative analyst expert.
3
+ """
4
+
5
+ from typing import List, Dict
6
+ from experts.domain import DomainBase
7
+
8
+ class QuantitativeAnalystDomain(DomainBase):
9
+ """Domain definition for quantitative analysis."""
10
+
11
+ def __init__(self):
12
+ super().__init__()
13
+ self.name = "quantitative_analyst"
14
+ self.capabilities = [
15
+ "financial modeling",
16
+ "algorithmic trading strategy",
17
+ "statistical analysis",
18
+ "portfolio optimization",
19
+ "risk assessment",
20
+ "quantitative research"
21
+ ]
22
+
23
+ def get_task_examples(self) -> List[Dict[str, str]]:
24
+ """Get example tasks for this domain."""
25
+ return [
26
+ {
27
+ "description": "Create a Monte Carlo simulation for stock price forecasting",
28
+ "input": "Simulate daily stock prices for the next 30 days using historical volatility",
29
+ "output": "Python code for Monte Carlo simulation with statistical analysis"
30
+ },
31
+ {
32
+ "description": "Optimize a portfolio using mean-variance optimization",
33
+ "input": "Maximize returns while keeping risk below 10%",
34
+ "output": "Optimal portfolio weights and risk metrics"
35
+ },
36
+ {
37
+ "description": "Implement a mean-reversion trading strategy",
38
+ "input": "Design a strategy that profits from price deviations",
39
+ "output": "Trading algorithm with risk management"
40
+ }
41
+ ]
42
+
43
+ def get_description(self) -> str:
44
+ """Get domain description."""
45
+ return """The Quantitative Analyst domain focuses on solving complex problems that require
46
+ integration of mathematical analysis, financial understanding, and code generation.
47
+ It's particularly suited for tasks involving:
48
+ - Financial modeling and simulation
49
+ - Algorithmic trading strategies
50
+ - Portfolio optimization
51
+ - Risk assessment
52
+ - Statistical analysis of financial data
53
+ - Quantitative research methods"""
quantitative_analyst/memory.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Memory management for quantitative analysis tasks.
3
+ """
4
+
5
+ from typing import Dict, Any, List
6
+ from experts.shared_memory import SharedMemory
7
+ from experts.shared import shared
8
+
9
+ class QuantAnalystMemoryManager:
10
+ """Memory manager specialized for quantitative analysis."""
11
+
12
+ def __init__(self):
13
+ self.shared_memory = shared.memory
14
+
15
+ def store_analysis(self, analysis: Dict[str, Any], metadata: Dict[str, Any]) -> None:
16
+ """Store quantitative analysis results with metadata."""
17
+ self.shared_memory.store(
18
+ content=analysis,
19
+ metadata={
20
+ **metadata,
21
+ "domain": "quantitative_analysis",
22
+ "type": "analysis_result"
23
+ }
24
+ )
25
+
26
+ def query(self, task: Dict[str, Any]) -> List[Dict[str, Any]]:
27
+ """Query relevant analysis results from memory."""
28
+ return self.shared_memory.query(
29
+ query=task,
30
+ filter={
31
+ "domain": "quantitative_analysis",
32
+ "type": "analysis_result"
33
+ }
34
+ )
35
+
36
+ def add_context(self, context: Dict[str, Any], tags: List[str]) -> None:
37
+ """Add contextual information with tags."""
38
+ self.shared_memory.store(
39
+ content=context,
40
+ metadata={
41
+ "domain": "quantitative_analysis",
42
+ "type": "context",
43
+ "tags": tags
44
+ }
45
+ )
46
+
47
+ def get_similar_analyses(self, query: str, top_k: int = 5) -> List[Dict[str, Any]]:
48
+ """Retrieve similar analysis results."""
49
+ return self.shared_memory.get_similar(
50
+ query=query,
51
+ filter={"domain": "quantitative_analysis"},
52
+ top_k=top_k
53
+ )
quantitative_analyst/prompts/base_prompt.txt ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ You are a Quantitative Analyst expert, capable of blending mathematical analysis, financial understanding, and code generation to solve complex problems. Your task is to analyze the given problem using a multi-domain approach:
2
+
3
+ 1. Mathematical Analysis:
4
+ - Identify underlying mathematical patterns
5
+ - Perform statistical analysis
6
+ - Consider computational complexity
7
+
8
+ 2. Financial Context:
9
+ - Evaluate financial implications
10
+ - Consider market conditions
11
+ - Assess risk and return
12
+
13
+ 3. Code Implementation:
14
+ - Generate efficient code
15
+ - Consider performance
16
+ - Include proper documentation
17
+
18
+ Remember to:
19
+ - Use shared memory for context
20
+ - Consider previous analyses
21
+ - Provide clear explanations
22
+ - Include relevant calculations
23
+ - Generate well-documented code
quantitative_analyst/prompts/config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_config": {
3
+ "temperature": 0.7,
4
+ "max_tokens": 2048,
5
+ "top_p": 0.9,
6
+ "top_k": 50,
7
+ "presence_penalty": 0.2,
8
+ "frequency_penalty": 0.2
9
+ },
10
+ "memory_config": {
11
+ "max_history": 10,
12
+ "similarity_threshold": 0.7,
13
+ "context_window": 500
14
+ },
15
+ "domain_config": {
16
+ "math_weight": 0.4,
17
+ "finance_weight": 0.4,
18
+ "code_weight": 0.2,
19
+ "context_weight": 0.1
20
+ }
21
+ }
quantitative_analyst/prompts/examples.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "examples": [
3
+ {
4
+ "task": "Create a Monte Carlo simulation for stock price forecasting",
5
+ "domain": "quantitative_analysis",
6
+ "input": {
7
+ "historical_data": "3 years of daily closing prices",
8
+ "forecast_period": "30 days",
9
+ "volatility_method": "historical"
10
+ },
11
+ "output": {
12
+ "code": """import numpy as np\nimport pandas as pd\n\ndef monte_carlo_simulation(prices, days=30, simulations=1000):\n # Calculate returns\n returns = prices.pct_change().dropna()\n mean_return = returns.mean()\n std_dev = returns.std()\n \n # Generate random returns\n random_returns = np.random.normal(mean_return, std_dev, (days, simulations))\n \n # Calculate future prices\n last_price = prices.iloc[-1]\n future_prices = last_price * (1 + random_returns).cumprod()\n \n return future_prices\n""",
13
+ "analysis": {
14
+ "confidence": 0.85,
15
+ "risk_profile": "moderate",
16
+ "computational_complexity": "medium"
17
+ }
18
+ }
19
+ },
20
+ {
21
+ "task": "Optimize a portfolio using mean-variance optimization",
22
+ "domain": "quantitative_analysis",
23
+ "input": {
24
+ "assets": ["AAPL", "GOOGL", "MSFT", "AMZN"],
25
+ "risk_tolerance": 0.1,
26
+ "expected_returns": [0.12, 0.15, 0.10, 0.13]
27
+ },
28
+ "output": {
29
+ "code": """import numpy as np\nimport cvxpy as cp\n\ndef optimize_portfolio(returns, risk_tolerance):\n n = len(returns)\n weights = cp.Variable(n)\n \n # Objective: maximize return\n objective = cp.Maximize(returns @ weights)\n \n # Constraints: sum of weights = 1, risk <= tolerance\n constraints = [cp.sum(weights) == 1,\n cp.quad_form(weights, np.cov(returns)) <= risk_tolerance]\n \n prob = cp.Problem(objective, constraints)\n prob.solve()\n \n return weights.value\n""",
30
+ "analysis": {
31
+ "confidence": 0.9,
32
+ "risk_profile": "low",
33
+ "computational_complexity": "high"
34
+ }
35
+ }
36
+ }
37
+ ]
38
+ }
quantitative_analyst/quantitative_analyst_expert.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ QuantitativeAnalystExpert: A specialized expert that blends math, finance, and code domains
3
+ for solving complex quantitative analysis tasks.
4
+ """
5
+
6
+ from typing import Dict, Any, Optional
7
+ from experts.base_expert import BaseExpert
8
+ from experts.domain import DomainBase
9
+ from experts.tools import ToolBase
10
+ from experts.shared import shared
11
+ from experts.chain_tracker import ChainTracker
12
+ from experts.shared_memory import SharedMemory
13
+
14
+ class QuantitativeAnalystExpert(BaseExpert):
15
+ """Expert specialized in quantitative analysis tasks."""
16
+
17
+ def __init__(self):
18
+ super().__init__()
19
+ self.domains = ["math", "finance", "code"]
20
+ self.math_module = shared.math_module
21
+ self.finance_module = shared.finance_module
22
+ self.codegen_tool = shared.codegen_tool
23
+ self.shared_memory = shared.memory
24
+ self.chain_tracker = ChainTracker()
25
+
26
+ def handle_task(self, task: Dict[str, Any], context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
27
+ """
28
+ Handle a quantitative analysis task by blending math, finance, and code domains.
29
+
30
+ Args:
31
+ task: Task description and parameters
32
+ context: Optional context information
33
+
34
+ Returns:
35
+ Dict containing the blended analysis results
36
+ """
37
+ # Query shared memory for relevant context
38
+ memory_context = self.shared_memory.query(task)
39
+
40
+ # Analyze math components
41
+ math_analysis = self.math_module.analyze(task)
42
+
43
+ # Evaluate financial aspects
44
+ finance_evaluation = self.finance_module.evaluate(task)
45
+
46
+ # Generate necessary code
47
+ code_generation = self.codegen_tool.generate_code(task)
48
+
49
+ # Combine results using blended reasoning
50
+ combined_result = self._blend_results(
51
+ math_analysis,
52
+ finance_evaluation,
53
+ code_generation,
54
+ memory_context
55
+ )
56
+
57
+ # Log the chain of reasoning
58
+ self.chain_tracker.log_chain(
59
+ task=task,
60
+ math_result=math_analysis,
61
+ finance_result=finance_evaluation,
62
+ code_result=code_generation,
63
+ final_result=combined_result
64
+ )
65
+
66
+ return combined_result
67
+
68
+ def _blend_results(self, math: Dict, finance: Dict, code: Dict, memory: Dict) -> Dict:
69
+ """Combine results from different domains."""
70
+ # Implementation of result blending logic
71
+ # This would typically involve:
72
+ # 1. Weighting different domain results
73
+ # 2. Integrating memory context
74
+ # 3. Generating comprehensive analysis
75
+
76
+ blended_result = {
77
+ "math_analysis": math,
78
+ "financial_evaluation": finance,
79
+ "generated_code": code,
80
+ "context": memory,
81
+ "final_recommendation": self._generate_recommendation(math, finance)
82
+ }
83
+
84
+ return blended_result
85
+
86
+ def _generate_recommendation(self, math: Dict, finance: Dict) -> str:
87
+ """Generate a final recommendation based on math and finance analysis."""
88
+ # This would be implemented based on specific use cases
89
+ return """Based on the quantitative analysis:
90
+ - Mathematical soundness: {}
91
+ - Financial implications: {}
92
+ - Recommended action: {}""".format(
93
+ math.get("confidence", "N/A"),
94
+ finance.get("impact", "N/A"),
95
+ self._determine_action(math, finance)
96
+ )
97
+
98
+ def _determine_action(self, math: Dict, finance: Dict) -> str:
99
+ """Determine appropriate action based on analysis."""
100
+ # Placeholder for action determination logic
101
+ return "Analyze results and determine appropriate action"
quantitative_analyst/tools.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tools for quantitative analysis tasks.
3
+ """
4
+
5
+ from typing import Dict, Any
6
+ from experts.tools import ToolBase
7
+ from experts.shared import shared
8
+
9
+ class MathAnalysisTool(ToolBase):
10
+ """Tool for mathematical analysis."""
11
+
12
+ def analyze(self, task: Dict[str, Any]) -> Dict[str, Any]:
13
+ """Analyze mathematical components of the task."""
14
+ # Placeholder - would use shared.math_module in production
15
+ result = {
16
+ "analysis": "Mathematical analysis of task components",
17
+ "confidence": 0.9,
18
+ "metrics": {
19
+ "complexity": "medium",
20
+ "computational_effort": "moderate"
21
+ }
22
+ }
23
+ return result
24
+
25
+ class FinanceEvaluationTool(ToolBase):
26
+ """Tool for financial evaluation."""
27
+
28
+ def evaluate(self, task: Dict[str, Any]) -> Dict[str, Any]:
29
+ """Evaluate financial aspects of the task."""
30
+ # Placeholder - would use shared.finance_module in production
31
+ result = {
32
+ "evaluation": "Financial impact assessment",
33
+ "risk_profile": "moderate",
34
+ "return_potential": "high",
35
+ "confidence": 0.85
36
+ }
37
+ return result
38
+
39
+ class CodeGenerationTool(ToolBase):
40
+ """Tool for code generation."""
41
+
42
+ def generate_code(self, task: Dict[str, Any]) -> Dict[str, Any]:
43
+ """Generate code to implement the solution."""
44
+ # Placeholder - would use shared.codegen_tool in production
45
+ result = {
46
+ "code": "# Python code implementation",
47
+ "language": "python",
48
+ "dependencies": ["numpy", "pandas", "scipy"],
49
+ "complexity": "medium"
50
+ }
51
+ return result