--- license: apache-2.0 base_model: - allenai/Olmo-3-7B - allenai/Olmo-3-7B-Instruct - allenai/Olmo-3-7B-Think - allenai/Olmo-3-7B-Think-SFT - allenai/Olmo-3-7B-Think-DPO - allenai/Olmo-3-7B-RL-Zero-IF - allenai/Olmo-3-7B-RL-Zero-Math - allenai/Olmo-3-7B-RL-Zero-Code - allenai/Olmo-3-7B-RL-Zero-Mix tags: - moe - frankenmoe - merge - mergekit - lazymergekit - allenai/Olmo-3-7B - allenai/Olmo-3-7B-Instruct - allenai/Olmo-3-7B-Think - allenai/Olmo-3-7B-Think-SFT - allenai/Olmo-3-7B-Think-DPO - allenai/Olmo-3-7B-RL-Zero-IF - allenai/Olmo-3-7B-RL-Zero-Math - allenai/Olmo-3-7B-RL-Zero-Code - allenai/Olmo-3-7B-RL-Zero-Mix --- # olmo3-7b-slerp olmo3-7b-slerp is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [allenai/Olmo-3-7B](https://huggingface.co/allenai/Olmo-3-7B) * [allenai/Olmo-3-7B-Instruct](https://huggingface.co/allenai/Olmo-3-7B-Instruct) * [allenai/Olmo-3-7B-Think](https://huggingface.co/allenai/Olmo-3-7B-Think) * [allenai/Olmo-3-7B-Think-SFT](https://huggingface.co/allenai/Olmo-3-7B-Think-SFT) * [allenai/Olmo-3-7B-Think-DPO](https://huggingface.co/allenai/Olmo-3-7B-Think-DPO) * [allenai/Olmo-3-7B-RL-Zero-IF](https://huggingface.co/allenai/Olmo-3-7B-RL-Zero-IF) * [allenai/Olmo-3-7B-RL-Zero-Math](https://huggingface.co/allenai/Olmo-3-7B-RL-Zero-Math) * [allenai/Olmo-3-7B-RL-Zero-Code](https://huggingface.co/allenai/Olmo-3-7B-RL-Zero-Code) * [allenai/Olmo-3-7B-RL-Zero-Mix](https://huggingface.co/allenai/Olmo-3-7B-RL-Zero-Mix) ## 🧩 Configuration ```yaml slices: - sources: - model: allenai/Olmo-3-7B layer_range: [0, 32] - model: allenai/Olmo-3-7B-Instruct layer_range: [0, 32] - model: allenai/Olmo-3-7B-Think layer_range: [0, 32] - model: allenai/Olmo-3-7B-Think-SFT layer_range: [0, 32] - model: allenai/Olmo-3-7B-Think-DPO layer_range: [0, 32] - model: allenai/Olmo-3-7B-RL-Zero-IF layer_range: [0, 32] - model: allenai/Olmo-3-7B-RL-Zero-Math layer_range: [0, 32] - model: allenai/Olmo-3-7B-RL-Zero-Code layer_range: [0, 32] - model: allenai/Olmo-3-7B-RL-Zero-Mix base_model: allenai/Olmo-3-7B experts: - source_model: allenai/Olmo-3-7B weight: 0.2 - source_model: allenai/Olmo-3-7B-Instruct weight: 0.1 - source_model: allenai/Olmo-3-7B-Think weight: 0.1 - source_model: allenai/Olmo-3-7B-Think-SFT weight: 0.1 - source_model: allenai/Olmo-3-7B-Think-DPO weight: 0.1 - source_model: allenai/Olmo-3-7B-RL-Zero-IF weight: 0.1 - source_model: allenai/Olmo-3-7B-RL-Zero-Math weight: 0.1 - source_model: allenai/Olmo-3-7B-RL-Zero-Code weight: 0.1 - source_model: allenai/Olmo-3-7B-RL-Zero-Mix weight: 0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 merge_type: slerp dtype: bfloat16 layer_range: [0, 32] ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "jsuheb/olmo3-7b-slerp" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```