tnaumann bsnelling commited on
Commit
b2646bd
·
verified ·
1 Parent(s): f2f7230

Upload data_summary_card.md (#12)

Browse files

- Upload data_summary_card.md (456a779bcb1209f30d067cccf9a05b304ee4095b)


Co-authored-by: Blake S <bsnelling@users.noreply.huggingface.co>

Files changed (1) hide show
  1. data_summary_card.md +141 -0
data_summary_card.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Data Summary for microsoft_llava-med-v1.5-mistral-7b
2
+
3
+ ## 1. General information
4
+
5
+ **1.0.1 Version of the Summary:** 1.0
6
+
7
+
8
+
9
+ **1.0.2 Last update:** 24-Nov-2025
10
+
11
+
12
+
13
+ ## 1.1 Model Developer Identification
14
+
15
+ **1.1.1 Model Developer name and contact details:** Microsoft Corporation at One Microsoft Way, Redmond, WA 98052. Tel: 425-882-8080
16
+
17
+
18
+
19
+ ## 1.2 Model Identification
20
+
21
+ **1.2.1 Versioned model name(s):** LLaVA-Med-v1.5-Mistral-7B
22
+
23
+
24
+
25
+ ## 1.2.2 Model release date: 14-May-2024
26
+
27
+
28
+
29
+ ## 1.3 Overall training data size and characteristics
30
+
31
+ ### 1.3.1 Size of dataset and characteristics
32
+
33
+ **1.3.1.A Text training data size:** Less than 1 billion tokens
34
+
35
+
36
+
37
+ **1.3.1.B Text training data content:** Med builds upon [PMC-15 dataset,](https://https://arxiv.org/abs/2303.00915) which is a large-scale parallel image-text dataset for biomedical vision-language processing. It contains 15 million figure-caption pairs extracted from biomedical research articles in PubMed Central.
38
+
39
+
40
+
41
+
42
+
43
+ **1.3.1.C Image training data size:** Less than 1 billion tokens
44
+
45
+
46
+
47
+ **1.3.1.D Image training data content:** Biomedical figures and images extracted from PubMed Central research articles, including microscopy, radiography, histology, chest X-rays, CT and MRI scans, gross pathology images, and diverse figure-caption pairs
48
+
49
+
50
+
51
+ **1.3.1.E Audio training data size:** Not applicable
52
+
53
+
54
+
55
+ **1.3.1.F Audio training data content:** Not applicable
56
+
57
+
58
+
59
+ **1.3.1.G Video training data size:** Not applicable
60
+
61
+
62
+
63
+ **1.3.1.H Video training data content:** Not applicable
64
+
65
+
66
+
67
+ **1.3.1.I Other training data size:** Not applicable
68
+
69
+
70
+
71
+ **1.3.1.J Other training data content:** Not applicable
72
+
73
+
74
+
75
+ **1.3.2 Latest date of data acquisition/collection for model training:** 01-May-2024
76
+
77
+
78
+
79
+ **1.3.3 Is data collection ongoing to update the model with new data collection after deployment?** No
80
+
81
+
82
+
83
+ **1.3.4 Date the training dataset was first used to train the model:** 01-May-2024
84
+
85
+
86
+
87
+ **1.3.5 Rationale or purpose of data selection:** The dataset leverages PMC-15M, a broad-coverage biomedical figure-caption corpus, to align biomedical visual concepts and enable open-ended instruction-following. This supports research use by improving biomedical VQA and visual chat capabilities through curriculum learning using diverse, automatically generated instruction data
88
+
89
+
90
+
91
+ ## 2. List of data sources
92
+
93
+ ### 2.1 Publicly available datasets
94
+
95
+ **2.1.1 Have you used publicly available datasets to train the model?** Yes
96
+
97
+
98
+
99
+ ## 2.2 Private non-publicly available datasets obtained from third parties
100
+
101
+ ### 2.2.1 Datasets commercially licensed by rights holders or their representatives
102
+
103
+ **2.2.1.A Have you concluded transactional commercial licensing agreement(s) with rights holder(s) or with their representatives?** Not applicable
104
+
105
+
106
+
107
+ ### 2.2.2 Private datasets obtained from other third-parties
108
+
109
+ **2.2.2.A Have you obtained private datasets from third parties that are not licensed as described in Section 2.2.1, such as data obtained from providers of private databases, or data intermediaries?** No
110
+
111
+
112
+
113
+ ## 2.3 Personal Information
114
+
115
+ **2.3.1 Was personal data used to train the model?** Microsoft follows all relevant laws and regulations pertaining to personal information
116
+
117
+
118
+
119
+ ## 2.4 Synthetic data
120
+
121
+ **2.4.1 Was any synthetic AI-generated data used to train the model?** Yes
122
+
123
+
124
+
125
+ ## 3. Data processing aspects
126
+
127
+ ### 3.1 Respect of reservation of rights from text and data mining exception or limitation
128
+
129
+ **3.1.1 Does this dataset include any data protected by copyright, trademark, or patent?** Microsoft follows all required regulations and laws for processing data protected by copyright, trademark, or patent
130
+
131
+
132
+
133
+ ## 3.2 Other information
134
+
135
+ **3.2.1 Does the dataset include information about consumer groups without revealing individual consumer identities?** Microsoft follows all required regulations and laws for protecting consumer identities
136
+
137
+
138
+
139
+ **3.2.2 Was the dataset cleaned or modified before model training?** Yes
140
+
141
+