new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments

The introduction of genome engineering technology has transformed biomedical research, making it possible to make precise changes to genetic information. However, creating an efficient gene-editing system requires a deep understanding of CRISPR technology, and the complex experimental systems under investigation. While Large Language Models (LLMs) have shown promise in various tasks, they often lack specific knowledge and struggle to accurately solve biological design problems. In this work, we introduce CRISPR-GPT, an LLM agent augmented with domain knowledge and external tools to automate and enhance the design process of CRISPR-based gene-editing experiments. CRISPR-GPT leverages the reasoning ability of LLMs to facilitate the process of selecting CRISPR systems, designing guide RNAs, recommending cellular delivery methods, drafting protocols, and designing validation experiments to confirm editing outcomes. We showcase the potential of CRISPR-GPT for assisting non-expert researchers with gene-editing experiments from scratch and validate the agent's effectiveness in a real-world use case. Furthermore, we explore the ethical and regulatory considerations associated with automated gene-editing design, highlighting the need for responsible and transparent use of these tools. Our work aims to bridge the gap between beginner biological researchers and CRISPR genome engineering techniques, and demonstrate the potential of LLM agents in facilitating complex biological discovery tasks.

  • 10 authors
·
Apr 27, 2024

CRISP -- Compliant ROS2 Controllers for Learning-Based Manipulation Policies and Teleoperation

Learning-based controllers, such as diffusion policies and vision-language action models, often generate low-frequency or discontinuous robot state changes. Achieving smooth reference tracking requires a low-level controller that converts high-level targets commands into joint torques, enabling compliant behavior during contact interactions. We present CRISP, a lightweight C++ implementation of compliant Cartesian and joint-space controllers for the ROS2 control standard, designed for seamless integration with high-level learning-based policies as well as teleoperation. The controllers are compatible with any manipulator that exposes a joint-torque interface. Through our Python and Gymnasium interfaces, CRISP provides a unified pipeline for recording data from hardware and simulation and deploying high-level learning-based policies seamlessly, facilitating rapid experimentation. The system has been validated on hardware with the Franka Robotics FR3 and in simulation with the Kuka IIWA14 and Kinova Gen3. Designed for rapid integration, flexible deployment, and real-time performance, our implementation provides a unified pipeline for data collection and policy execution, lowering the barrier to applying learning-based methods on ROS2-compatible manipulators. Detailed documentation is available at the project website - https://utiasDSL.github.io/crisp_controllers.

  • 6 authors
·
Sep 8, 2025

PepMLM: Target Sequence-Conditioned Generation of Peptide Binders via Masked Language Modeling

Target proteins that lack accessible binding pockets and conformational stability have posed increasing challenges for drug development. Induced proximity strategies, such as PROTACs and molecular glues, have thus gained attention as pharmacological alternatives, but still require small molecule docking at binding pockets for targeted protein degradation (TPD). The computational design of protein-based binders presents unique opportunities to access undruggable targets, but have often relied on stable 3D structures or predictions for effective binder generation. Recently, we have leveraged the expressive latent spaces of protein language models (pLMs) for the prioritization of peptide binders from sequence alone, which we have then fused to E3 ubiquitin ligase domains, creating a CRISPR-analogous TPD system for target proteins. However, our methods rely on training discriminator models for ranking heuristically or unconditionally-derived guide peptides for their target binding capability. In this work, we introduce PepMLM, a purely target sequence-conditioned de novo generator of linear peptide binders. By employing a novel masking strategy that uniquely positions cognate peptide sequences at the terminus of target protein sequences, PepMLM tasks the state-of-the-art ESM-2 pLM to fully reconstruct the binder region, achieving low perplexities matching or improving upon previously-validated peptide-protein sequence pairs. After successful in silico benchmarking with AlphaFold-Multimer, we experimentally verify PepMLM's efficacy via fusion of model-derived peptides to E3 ubiquitin ligase domains, demonstrating endogenous degradation of target substrates in cellular models. In total, PepMLM enables the generative design of candidate binders to any target protein, without the requirement of target structure, empowering downstream programmable proteome editing applications.

  • 13 authors
·
Oct 5, 2023

GENERator: A Long-Context Generative Genomic Foundation Model

Advancements in DNA sequencing technologies have significantly improved our ability to decode genomic sequences. However, the prediction and interpretation of these sequences remain challenging due to the intricate nature of genetic material. Large language models (LLMs) have introduced new opportunities for biological sequence analysis. Recent developments in genomic language models have underscored the potential of LLMs in deciphering DNA sequences. Nonetheless, existing models often face limitations in robustness and application scope, primarily due to constraints in model structure and training data scale. To address these limitations, we present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters. Trained on an expansive dataset comprising 386B bp of eukaryotic DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks. The model adheres to the central dogma of molecular biology, accurately generating protein-coding sequences that translate into proteins structurally analogous to known families. It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of promoter sequences with specific activity profiles. These capabilities position the GENERator as a pivotal tool for genomic research and biotechnological advancement, enhancing our ability to interpret and predict complex biological systems and enabling precise genomic interventions.

  • 8 authors
·
Feb 11, 2025

CellCLIP -- Learning Perturbation Effects in Cell Painting via Text-Guided Contrastive Learning

High-content screening (HCS) assays based on high-throughput microscopy techniques such as Cell Painting have enabled the interrogation of cells' morphological responses to perturbations at an unprecedented scale. The collection of such data promises to facilitate a better understanding of the relationships between different perturbations and their effects on cellular state. Towards achieving this goal, recent advances in cross-modal contrastive learning could, in theory, be leveraged to learn a unified latent space that aligns perturbations with their corresponding morphological effects. However, the application of such methods to HCS data is not straightforward due to substantial differences in the semantics of Cell Painting images compared to natural images, and the difficulty of representing different classes of perturbations (e.g., small molecule vs CRISPR gene knockout) in a single latent space. In response to these challenges, here we introduce CellCLIP, a cross-modal contrastive learning framework for HCS data. CellCLIP leverages pre-trained image encoders coupled with a novel channel encoding scheme to better capture relationships between different microscopy channels in image embeddings, along with natural language encoders for representing perturbations. Our framework outperforms current open-source models, demonstrating the best performance in both cross-modal retrieval and biologically meaningful downstream tasks while also achieving significant reductions in computation time.

  • 4 authors
·
May 16, 2025

GALAX: Graph-Augmented Language Model for Explainable Reinforcement-Guided Subgraph Reasoning in Precision Medicine

In precision medicine, quantitative multi-omic features, topological context, and textual biological knowledge play vital roles in identifying disease-critical signaling pathways and targets. Existing pipelines capture only part of these-numerical omics ignore topological context, text-centric LLMs lack quantitative grounded reasoning, and graph-only models underuse node semantics and the generalization of LLMs-limiting mechanistic interpretability. Although Process Reward Models (PRMs) aim to guide reasoning in LLMs, they remain limited by unreliable intermediate evaluation, and vulnerability to reward hacking with computational cost. These gaps motivate integrating quantitative multi-omic signals, topological structure with node annotations, and literature-scale text via LLMs, using subgraph reasoning as the principle bridge linking numeric evidence, topological knowledge and language context. Therefore, we propose GALAX (Graph Augmented LAnguage model with eXplainability), an innovative framework that integrates pretrained Graph Neural Networks (GNNs) into Large Language Models (LLMs) via reinforcement guided by a Graph Process Reward Model (GPRM), which generates disease-relevant subgraphs in a step-wise manner initiated by an LLM and iteratively evaluated by a pretrained GNN, enabling process-level supervision without explicit intermediate reasoning annotations. As an application, we also introduced Target-QA, a benchmark combining CRISPR-identified targets, multi-omic profiles, and biomedical graph knowledge across diverse cancer cell lines, which enables GNN pretraining for supervising step-wise graph construction and supports long-context reasoning over text-numeric graphs (TNGs), providing a scalable and biologically grounded framework for explainable, reinforcement-guided subgraph reasoning toward reliable and interpretable target and pathway discovery in precision medicine.

  • 7 authors
·
Sep 25, 2025

CellForge: Agentic Design of Virtual Cell Models

Virtual cell modeling represents an emerging frontier at the intersection of artificial intelligence and biology, aiming to predict quantities such as responses to diverse perturbations quantitatively. However, autonomously building computational models for virtual cells is challenging due to the complexity of biological systems, the heterogeneity of data modalities, and the need for domain-specific expertise across multiple disciplines. Here, we introduce CellForge, an agentic system that leverages a multi-agent framework that transforms presented biological datasets and research objectives directly into optimized computational models for virtual cells. More specifically, given only raw single-cell multi-omics data and task descriptions as input, CellForge outputs both an optimized model architecture and executable code for training virtual cell models and inference. The framework integrates three core modules: Task Analysis for presented dataset characterization and relevant literature retrieval, Method Design, where specialized agents collaboratively develop optimized modeling strategies, and Experiment Execution for automated generation of code. The agents in the Design module are separated into experts with differing perspectives and a central moderator, and have to collaboratively exchange solutions until they achieve a reasonable consensus. We demonstrate CellForge's capabilities in single-cell perturbation prediction, using six diverse datasets that encompass gene knockouts, drug treatments, and cytokine stimulations across multiple modalities. CellForge consistently outperforms task-specific state-of-the-art methods. Overall, CellForge demonstrates how iterative interaction between LLM agents with differing perspectives provides better solutions than directly addressing a modeling challenge. Our code is publicly available at https://github.com/gersteinlab/CellForge.

  • 15 authors
·
Aug 4, 2025 2

PlantBiMoE: A Bidirectional Foundation Model with SparseMoE for Plant Genomes

Understanding the underlying linguistic rules of plant genomes remains a fundamental challenge in computational biology. Recent advances including AgroNT and PDLLMs have made notable progress although, they suffer from excessive parameter size and limited ability to model the bidirectional nature of DNA strands respectively. To address these limitations, we propose PlantBiMoE, a lightweight and expressive plant genome language model that integrates bidirectional Mamba and a Sparse Mixture-of-Experts (SparseMoE) framework. The bidirectional Mamba enables the model to effectively capture structural dependencies across both the forward and reverse DNA strands, while SparseMoE significantly reduces the number of active parameters, improving computational efficiency without sacrificing modeling capacity. We evaluated and tested our model on the Modified Plants Genome Benchmark (MPGB), an enhanced genomic benchmark, which consolidates 31 datasets across 11 representative tasks, with input sequence lengths ranging from 50 to 6,000 bp. Experimental results demonstrate that PlantBiMoE achieves the best performance on 20 out of 31 datasets and the average best when comparing with existing models. In summary, all above results demonstrate that our model can effectively represent plant genomic sequences, serving as a robust computational tool for diverse genomic tasks, while making substantive contributions to plant genomics, gene editing, and synthetic biology. The code is available at: https://github.com/HUST-Keep-Lin/PlantBiMoE

  • 5 authors
·
Dec 7, 2025

GeneGPT: Augmenting Large Language Models with Domain Tools for Improved Access to Biomedical Information

While large language models (LLMs) have been successfully applied to various tasks, they still face challenges with hallucinations. Augmenting LLMs with domain-specific tools such as database utilities can facilitate easier and more precise access to specialized knowledge. In this paper, we present GeneGPT, a novel method for teaching LLMs to use the Web APIs of the National Center for Biotechnology Information (NCBI) for answering genomics questions. Specifically, we prompt Codex to solve the GeneTuring tests with NCBI Web APIs by in-context learning and an augmented decoding algorithm that can detect and execute API calls. Experimental results show that GeneGPT achieves state-of-the-art performance on eight tasks in the GeneTuring benchmark with an average score of 0.83, largely surpassing retrieval-augmented LLMs such as the new Bing (0.44), biomedical LLMs such as BioMedLM (0.08) and BioGPT (0.04), as well as GPT-3 (0.16) and ChatGPT (0.12). Our further analyses suggest that: (1) API demonstrations have good cross-task generalizability and are more useful than documentations for in-context learning; (2) GeneGPT can generalize to longer chains of API calls and answer multi-hop questions in GeneHop, a novel dataset introduced in this work; (3) Different types of errors are enriched in different tasks, providing valuable insights for future improvements.

  • 4 authors
·
Apr 19, 2023

BMFM-DNA: A SNP-aware DNA foundation model to capture variant effects

Large language models (LLMs) trained on text demonstrated remarkable results on natural language processing (NLP) tasks. These models have been adapted to decipher the language of DNA, where sequences of nucleotides act as "words" that encode genomic functions. However, the genome differs fundamentally from natural language, as it lacks clearly defined words or a consistent grammar. Although DNA language models (DNALMs) such as DNABERT, GENA-LM have achieved high level of performance on genome-related biological tasks, these models do not encode biological functions in the presence of sequence variations. To address this problem, we pre-train foundation models that effectively integrate sequence variations, in particular Single Nucleotide Polymorphisms (SNPs), as they underlie important biological functions. Specifically, we use ModernBERT to pre-train two different Biomedical Foundation Models (BMFM), namely, BMFM-DNA-REF in which the model is trained with sequences of varying lengths along with their reverse complements derived from the reference genome and BMFM-DNA-SNP in which the model is trained with sequences created using a novel representation scheme that encodes sequence variations. Our findings indicate that integrating sequence variations into DNALMs helps capture the biological functions as seen in improvements on all fine-tuning tasks. To explore the model's practical utility, we experimented with various strategies for SNP imputation on promoter detection task introduced in DNABERT-2. However, we acknowledge that the current benchmarks are limited in their ability to fully evaluate these models. To enable more comprehensive assessment in the future and encourage community contributions, we release our models through HuggingFace and the code to reproduce the results at https://github.com/BiomedSciAI/biomed-multi-omic

ibm-research IBM Research
·
Jun 26, 2025

MAMMAL -- Molecular Aligned Multi-Modal Architecture and Language

Drug discovery typically consists of multiple steps, including identifying a target protein key to a disease's etiology, validating that interacting with this target could prevent symptoms or cure the disease, discovering a small molecule or biologic therapeutic to interact with it, and optimizing the candidate molecule through a complex landscape of required properties. Drug discovery related tasks often involve prediction and generation while considering multiple entities that potentially interact, which poses a challenge for typical AI models. For this purpose we present MAMMAL - Molecular Aligned Multi-Modal Architecture and Language - a method that we applied to create a versatile multi-task foundation model ibm/biomed.omics.bl.sm.ma-ted-458m that learns from large-scale biological datasets (2 billion samples) across diverse modalities, including proteins, small molecules, and genes. We introduce a prompt syntax that supports a wide range of classification, regression, and generation tasks. It allows combining different modalities and entity types as inputs and/or outputs. Our model handles combinations of tokens and scalars and enables the generation of small molecules and proteins, property prediction, and transcriptomic lab test predictions. We evaluated the model on 11 diverse downstream tasks spanning different steps within a typical drug discovery pipeline, where it reaches new SOTA in 9 tasks and is comparable to SOTA in 2 tasks. This performance is achieved while using a unified architecture serving all tasks, in contrast to the original SOTA performance achieved using tailored architectures. The model code and pretrained weights are publicly available at https://github.com/BiomedSciAI/biomed-multi-alignment and https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.

  • 19 authors
·
Oct 28, 2024

Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification

The interactions between DNA, RNA, and proteins are fundamental to biological processes, as illustrated by the central dogma of molecular biology. Although modern biological pre-trained models have achieved great success in analyzing these macromolecules individually, their interconnected nature remains underexplored. This paper follows the guidance of the central dogma to redesign both the data and model pipeline and offers a comprehensive framework, Life-Code, that spans different biological functions. As for data flow, we propose a unified pipeline to integrate multi-omics data by reverse-transcribing RNA and reverse-translating amino acids into nucleotide-based sequences. As for the model, we design a codon tokenizer and a hybrid long-sequence architecture to encode the interactions between coding and non-coding regions through masked modeling pre-training. To model the translation and folding process with coding sequences, Life-Code learns protein structures of the corresponding amino acids by knowledge distillation from off-the-shelf protein language models. Such designs enable Life-Code to capture complex interactions within genetic sequences, providing a more comprehensive understanding of multi-omics with the central dogma. Extensive experiments show that Life-Code achieves state-of-the-art results on various tasks across three omics, highlighting its potential for advancing multi-omics analysis and interpretation.

  • 10 authors
·
Feb 11, 2025

A Benchmark Dataset for Multimodal Prediction of Enzymatic Function Coupling DNA Sequences and Natural Language

Predicting gene function from its DNA sequence is a fundamental challenge in biology. Many deep learning models have been proposed to embed DNA sequences and predict their enzymatic function, leveraging information in public databases linking DNA sequences to an enzymatic function label. However, much of the scientific community's knowledge of biological function is not represented in these categorical labels, and is instead captured in unstructured text descriptions of mechanisms, reactions, and enzyme behavior. These descriptions are often captured alongside DNA sequences in biological databases, albeit in an unstructured manner. Deep learning of models predicting enzymatic function are likely to benefit from incorporating this multi-modal data encoding scientific knowledge of biological function. There is, however, no dataset designed for machine learning algorithms to leverage this multi-modal information. Here we propose a novel dataset and benchmark suite that enables the exploration and development of large multi-modal neural network models on gene DNA sequences and natural language descriptions of gene function. We present baseline performance on benchmarks for both unsupervised and supervised tasks that demonstrate the difficulty of this modeling objective, while demonstrating the potential benefit of incorporating multi-modal data types in function prediction compared to DNA sequences alone. Our dataset is at: https://hoarfrost-lab.github.io/BioTalk/.

  • 6 authors
·
Jul 21, 2024

BioProBench: Comprehensive Dataset and Benchmark in Biological Protocol Understanding and Reasoning

Biological protocols are fundamental to reproducible and safe life science research. While LLMs excel on general tasks, their systematic evaluation on these highly specialized, accuracy-critical, and inherently procedural texts remains limited. In this work, we present BioProBench, the first large-scale, integrated multi-task benchmark for biological protocol understanding and reasoning. While limited benchmarks have touched upon specific aspects like protocol QA, BioProBench provides a comprehensive suite of five core tasks: Protocol Question Answering, Step Ordering, Error Correction, Protocol Generation, and Protocol Reasoning, enabling a holistic evaluation of LLMs on procedural biological texts. Built upon 27K original protocols, it yields nearly 556K high-quality structured instances. We evaluate 12 mainstream open/closed-source LLMs on BioProBench. Experimental results reveal that while top models preform well on surface understanding tasks, struggle significantly with deep reasoning and structured generation tasks like ordering and generation. Furthermore, model comparisons reveal diverse performance: certain open-source models approach closed-source levels on some tasks, yet bio-specific small models lag behind general LLMs, indicating limitations on complex procedural content. Overall, our findings underscore that procedural reasoning within biological protocols represents a significant challenge for current LLMs. BioProBench serves as a standardized framework to diagnose these specific limitations and guide the development of AI systems better equipped for safely automating complex scientific procedures. The code and data are available at: https://github.com/YuyangSunshine/bioprotocolbench and https://huggingface.co/datasets/GreatCaptainNemo/BioProBench.

  • 5 authors
·
May 11, 2025

BioReason: Incentivizing Multimodal Biological Reasoning within a DNA-LLM Model

Unlocking deep, interpretable biological reasoning from complex genomic data is a major AI challenge hindering scientific discovery. Current DNA foundation models, despite strong sequence representation, struggle with multi-step reasoning and lack inherent transparent, biologically intuitive explanations. We introduce BioReason, a pioneering architecture that, for the first time, deeply integrates a DNA foundation model with a Large Language Model (LLM). This novel connection enables the LLM to directly process and reason with genomic information as a fundamental input, fostering a new form of multimodal biological understanding. BioReason's sophisticated multi-step reasoning is developed through supervised fine-tuning and targeted reinforcement learning, guiding the system to generate logical, biologically coherent deductions. On biological reasoning benchmarks including KEGG-based disease pathway prediction - where accuracy improves from 88% to 97% - and variant effect prediction, BioReason demonstrates an average 15% performance gain over strong single-modality baselines. BioReason reasons over unseen biological entities and articulates decision-making through interpretable, step-by-step biological traces, offering a transformative approach for AI in biology that enables deeper mechanistic insights and accelerates testable hypothesis generation from genomic data. Data, code, and checkpoints are publicly available at https://github.com/bowang-lab/BioReason

  • 11 authors
·
May 29, 2025

GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis

Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F_1 of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.

  • 3 authors
·
Jul 28, 2025 2

EnzyControl: Adding Functional and Substrate-Specific Control for Enzyme Backbone Generation

Designing enzyme backbones with substrate-specific functionality is a critical challenge in computational protein engineering. Current generative models excel in protein design but face limitations in binding data, substrate-specific control, and flexibility for de novo enzyme backbone generation. To address this, we introduce EnzyBind, a dataset with 11,100 experimentally validated enzyme-substrate pairs specifically curated from PDBbind. Building on this, we propose EnzyControl, a method that enables functional and substrate-specific control in enzyme backbone generation. Our approach generates enzyme backbones conditioned on MSA-annotated catalytic sites and their corresponding substrates, which are automatically extracted from curated enzyme-substrate data. At the core of EnzyControl is EnzyAdapter, a lightweight, modular component integrated into a pretrained motif-scaffolding model, allowing it to become substrate-aware. A two-stage training paradigm further refines the model's ability to generate accurate and functional enzyme structures. Experiments show that our EnzyControl achieves the best performance across structural and functional metrics on EnzyBind and EnzyBench benchmarks, with particularly notable improvements of 13\% in designability and 13\% in catalytic efficiency compared to the baseline models. The code is released at https://github.com/Vecteur-libre/EnzyControl.

Find Central Dogma Again

In recent years, large language models (LLMs) have achieved state-of-the-art results in various biological sequence analysis tasks, such as sequence classification, structure prediction, and function prediction. Similar to advancements in AI for other scientific fields, deeper research into biological LLMs has begun to focus on using these models to rediscover important existing biological laws or uncover entirely new patterns in biological sequences.This study leverages GPT-like LLMs to utilize language transfer capabilities to rediscover the genetic code rules of the central dogma. In our experimental design, we transformed the central dogma into a binary classification problem of aligning DNA sequences with protein sequences, where positive examples are matching DNA and protein sequences, and negative examples are non-matching pairs.We first trained a GPT-2 model from scratch using a dataset comprising protein sequences, DNA sequences, and sequences from languages such as English and Chinese. Subsequently, we fine-tuned the model using the English similarity judgment dataset from PAWS-X. When tested on a dataset for DNA and protein sequence alignment judgment, the fine-tuned model achieved a classification accuracy of 76%. The study also analyzed factors contributing to this zero-shot capability, including model training stability and types of training data.This research demonstrates that LLMs can, through the transfer of natural language capabilities and solely relying on the analysis of sequences themselves, rediscover the central dogma without prior knowledge of it. This study opens a new door for AI-driven biological research.

  • 1 authors
·
Feb 10, 2025

Vector-free DNA transfection by nuclear envelope mechanoporation

Genetic engineering of cells has a range of applications in treating incurable diseases. Plasmid DNA is a popular choice of nucleic acid for cell engineering due to its low cost and stability. However, plasmid DNA must survive the protective mechanisms present in the cell's cytoplasm to enter the nucleus for translation. Many of the existing methods for nucleic acid delivery, such as chemical-based and virus-based delivery, suffer from drawbacks induced by the nucleic acid carrier itself. Mechanical methods present an alternative to nucleic acid carriers by physically producing openings in the cell to deliver cargos. However, in most systems, the cell membrane openings are too small to deliver large cargos, or the poration process leads to low cell viability. In this study, we present a microfluidic device with integrated high aspect ratio nanostructures that repeatably rupture the cell membrane and nuclear envelope. These sharp-tipped nanolancets penetrate the cell deep enough to allow direct delivery of cargos into the nucleus, but still allow for cell recovery after treatment. We show the device's ability to deliver cargo to a variety of cell types while maintaining high viability. Then, we demonstrate the rapid onset of plasmid DNA expression that results from direct nuclear delivery of naked DNA, showing expression speeds comparable to microinjection, but with significantly greater throughput. We envision the use of this device as a tool to quickly produce high quantities of genetically engineered cells to treat a myriad of diseases.

  • 8 authors
·
Oct 2, 2025

HybriDNA: A Hybrid Transformer-Mamba2 Long-Range DNA Language Model

Advances in natural language processing and large language models have sparked growing interest in modeling DNA, often referred to as the "language of life". However, DNA modeling poses unique challenges. First, it requires the ability to process ultra-long DNA sequences while preserving single-nucleotide resolution, as individual nucleotides play a critical role in DNA function. Second, success in this domain requires excelling at both generative and understanding tasks: generative tasks hold potential for therapeutic and industrial applications, while understanding tasks provide crucial insights into biological mechanisms and diseases. To address these challenges, we propose HybriDNA, a decoder-only DNA language model that incorporates a hybrid Transformer-Mamba2 architecture, seamlessly integrating the strengths of attention mechanisms with selective state-space models. This hybrid design enables HybriDNA to efficiently process DNA sequences up to 131kb in length with single-nucleotide resolution. HybriDNA achieves state-of-the-art performance across 33 DNA understanding datasets curated from the BEND, GUE, and LRB benchmarks, and demonstrates exceptional capability in generating synthetic cis-regulatory elements (CREs) with desired properties. Furthermore, we show that HybriDNA adheres to expected scaling laws, with performance improving consistently as the model scales from 300M to 3B and 7B parameters. These findings underscore HybriDNA's versatility and its potential to advance DNA research and applications, paving the way for innovations in understanding and engineering the "language of life".

  • 15 authors
·
Feb 15, 2025

InstructBioMol: Advancing Biomolecule Understanding and Design Following Human Instructions

Understanding and designing biomolecules, such as proteins and small molecules, is central to advancing drug discovery, synthetic biology, and enzyme engineering. Recent breakthroughs in Artificial Intelligence (AI) have revolutionized biomolecular research, achieving remarkable accuracy in biomolecular prediction and design. However, a critical gap remains between AI's computational power and researchers' intuition, using natural language to align molecular complexity with human intentions. Large Language Models (LLMs) have shown potential to interpret human intentions, yet their application to biomolecular research remains nascent due to challenges including specialized knowledge requirements, multimodal data integration, and semantic alignment between natural language and biomolecules. To address these limitations, we present InstructBioMol, a novel LLM designed to bridge natural language and biomolecules through a comprehensive any-to-any alignment of natural language, molecules, and proteins. This model can integrate multimodal biomolecules as input, and enable researchers to articulate design goals in natural language, providing biomolecular outputs that meet precise biological needs. Experimental results demonstrate InstructBioMol can understand and design biomolecules following human instructions. Notably, it can generate drug molecules with a 10% improvement in binding affinity and design enzymes that achieve an ESP Score of 70.4, making it the only method to surpass the enzyme-substrate interaction threshold of 60.0 recommended by the ESP developer. This highlights its potential to transform real-world biomolecular research.

  • 12 authors
·
Oct 10, 2024

Exploiting Pretrained Biochemical Language Models for Targeted Drug Design

Motivation: The development of novel compounds targeting proteins of interest is one of the most important tasks in the pharmaceutical industry. Deep generative models have been applied to targeted molecular design and have shown promising results. Recently, target-specific molecule generation has been viewed as a translation between the protein language and the chemical language. However, such a model is limited by the availability of interacting protein-ligand pairs. On the other hand, large amounts of unlabeled protein sequences and chemical compounds are available and have been used to train language models that learn useful representations. In this study, we propose exploiting pretrained biochemical language models to initialize (i.e. warm start) targeted molecule generation models. We investigate two warm start strategies: (i) a one-stage strategy where the initialized model is trained on targeted molecule generation (ii) a two-stage strategy containing a pre-finetuning on molecular generation followed by target specific training. We also compare two decoding strategies to generate compounds: beam search and sampling. Results: The results show that the warm-started models perform better than a baseline model trained from scratch. The two proposed warm-start strategies achieve similar results to each other with respect to widely used metrics from benchmarks. However, docking evaluation of the generated compounds for a number of novel proteins suggests that the one-stage strategy generalizes better than the two-stage strategy. Additionally, we observe that beam search outperforms sampling in both docking evaluation and benchmark metrics for assessing compound quality. Availability and implementation: The source code is available at https://github.com/boun-tabi/biochemical-lms-for-drug-design and the materials are archived in Zenodo at https://doi.org/10.5281/zenodo.6832145

  • 5 authors
·
Sep 2, 2022

CoTox: Chain-of-Thought-Based Molecular Toxicity Reasoning and Prediction

Drug toxicity remains a major challenge in pharmaceutical development. Recent machine learning models have improved in silico toxicity prediction, but their reliance on annotated data and lack of interpretability limit their applicability. This limits their ability to capture organ-specific toxicities driven by complex biological mechanisms. Large language models (LLMs) offer a promising alternative through step-by-step reasoning and integration of textual data, yet prior approaches lack biological context and transparent rationale. To address this issue, we propose CoTox, a novel framework that integrates LLM with chain-of-thought (CoT) reasoning for multi-toxicity prediction. CoTox combines chemical structure data, biological pathways, and gene ontology (GO) terms to generate interpretable toxicity predictions through step-by-step reasoning. Using GPT-4o, we show that CoTox outperforms both traditional machine learning and deep learning model. We further examine its performance across various LLMs to identify where CoTox is most effective. Additionally, we find that representing chemical structures with IUPAC names, which are easier for LLMs to understand than SMILES, enhances the model's reasoning ability and improves predictive performance. To demonstrate its practical utility in drug development, we simulate the treatment of relevant cell types with drug and incorporated the resulting biological context into the CoTox framework. This approach allow CoTox to generate toxicity predictions aligned with physiological responses, as shown in case study. This result highlights the potential of LLM-based frameworks to improve interpretability and support early-stage drug safety assessment. The code and prompt used in this work are available at https://github.com/dmis-lab/CoTox.

  • 7 authors
·
Aug 5, 2025 2

TEDDY: A Family Of Foundation Models For Understanding Single Cell Biology

Understanding the biological mechanism of disease is critical for medicine, and in particular drug discovery. AI-powered analysis of genome-scale biological data hold great potential in this regard. The increasing availability of single-cell RNA sequencing data has enabled the development of large foundation models for disease biology. However, existing foundation models either do not improve or only modestly improve over task-specific models in downstream applications. Here, we explored two avenues for improving the state-of-the-art. First, we scaled the pre-training dataset to 116 million cells, which is larger than those used by previous models. Second, we leveraged the availability of large-scale biological annotations as a form of supervision during pre-training. We trained the TEDDY family of models comprising six transformer-based state-of-the-art single-cell foundation models with 70 million, 160 million, and 400 million parameters. We vetted our models on two downstream evaluation tasks -- identifying the underlying disease state of held-out donors not seen during training and distinguishing healthy cells from diseased ones for disease conditions and donors not seen during training. Scaling experiments showed that performance improved predictably with both data volume and parameter count. Our models showed substantial improvement over existing work on the first task and more muted improvements on the second.

  • 16 authors
·
Mar 5, 2025

BMFM-RNA: An Open Framework for Building and Evaluating Transcriptomic Foundation Models

Transcriptomic foundation models (TFMs) have recently emerged as powerful tools for analyzing gene expression in cells and tissues, supporting key tasks such as cell-type annotation, batch correction, and perturbation prediction. However, the diversity of model implementations and training strategies across recent TFMs, though promising, makes it challenging to isolate the contribution of individual design choices or evaluate their potential synergies. This hinders the field's ability to converge on best practices and limits the reproducibility of insights across studies. We present BMFM-RNA, an open-source, modular software package that unifies diverse TFM pretraining and fine-tuning objectives within a single framework. Leveraging this capability, we introduce a novel training objective, whole cell expression decoder (WCED), which captures global expression patterns using an autoencoder-like CLS bottleneck representation. In this paper, we describe the framework, supported input representations, and training objectives. We evaluated four model checkpoints pretrained on CELLxGENE using combinations of masked language modeling (MLM), WCED and multitask learning. Using the benchmarking capabilities of BMFM-RNA, we show that WCED-based models achieve performance that matches or exceeds state-of-the-art approaches like scGPT across more than a dozen datasets in both zero-shot and fine-tuning tasks. BMFM-RNA, available as part of the biomed-multi-omics project ( https://github.com/BiomedSciAI/biomed-multi-omic ), offers a reproducible foundation for systematic benchmarking and community-driven exploration of optimal TFM training strategies, enabling the development of more effective tools to leverage the latest advances in AI for understanding cell biology.

ibm-research IBM Research
·
Jun 17, 2025

BEACON: Benchmark for Comprehensive RNA Tasks and Language Models

RNA plays a pivotal role in translating genetic instructions into functional outcomes, underscoring its importance in biological processes and disease mechanisms. Despite the emergence of numerous deep learning approaches for RNA, particularly universal RNA language models, there remains a significant lack of standardized benchmarks to assess the effectiveness of these methods. In this study, we introduce the first comprehensive RNA benchmark BEACON (BEnchmArk for COmprehensive RNA Task and Language Models). First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications, enabling a comprehensive assessment of the performance of methods on various RNA understanding tasks. Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models. Third, we investigate the vital RNA language model components from the tokenizer and positional encoding aspects. Notably, our findings emphasize the superiority of single nucleotide tokenization and the effectiveness of Attention with Linear Biases (ALiBi) over traditional positional encoding methods. Based on these insights, a simple yet strong baseline called BEACON-B is proposed, which can achieve outstanding performance with limited data and computational resources. The datasets and source code of our benchmark are available at https://github.com/terry-r123/RNABenchmark.

  • 13 authors
·
Jun 14, 2024

Enhancing Ligand Pose Sampling for Molecular Docking

Deep learning promises to dramatically improve scoring functions for molecular docking, leading to substantial advances in binding pose prediction and virtual screening. To train scoring functions-and to perform molecular docking-one must generate a set of candidate ligand binding poses. Unfortunately, the sampling protocols currently used to generate candidate poses frequently fail to produce any poses close to the correct, experimentally determined pose, unless information about the correct pose is provided. This limits the accuracy of learned scoring functions and molecular docking. Here, we describe two improved protocols for pose sampling: GLOW (auGmented sampLing with sOftened vdW potential) and a novel technique named IVES (IteratiVe Ensemble Sampling). Our benchmarking results demonstrate the effectiveness of our methods in improving the likelihood of sampling accurate poses, especially for binding pockets whose shape changes substantially when different ligands bind. This improvement is observed across both experimentally determined and AlphaFold-generated protein structures. Additionally, we present datasets of candidate ligand poses generated using our methods for each of around 5,000 protein-ligand cross-docking pairs, for training and testing scoring functions. To benefit the research community, we provide these cross-docking datasets and an open-source Python implementation of GLOW and IVES at https://github.com/drorlab/GLOW_IVES .

  • 2 authors
·
Nov 30, 2023

BioMedGPT: Open Multimodal Generative Pre-trained Transformer for BioMedicine

Foundation models (FMs) have exhibited remarkable performance across a wide range of downstream tasks in many domains. Nevertheless, general-purpose FMs often face challenges when confronted with domain-specific problems, due to their limited access to the proprietary training data in a particular domain. In biomedicine, there are various biological modalities, such as molecules, proteins, and cells, which are encoded by the language of life and exhibit significant modality gaps with human natural language. In this paper, we introduce BioMedGPT, an open multimodal generative pre-trained transformer (GPT) for biomedicine, to bridge the gap between the language of life and human natural language. BioMedGPT allows users to easily ``communicate'' with diverse biological modalities through free text, which is the first of its kind. BioMedGPT aligns different biological modalities with natural language via a large generative language model, namely, BioMedGPT-LM. We publish BioMedGPT-10B, which unifies the feature spaces of molecules, proteins, and natural language via encoding and alignment. Through fine-tuning, BioMedGPT-10B outperforms or is on par with human and significantly larger general-purpose foundation models on the biomedical QA task. It also demonstrates promising performance in the molecule QA and protein QA tasks, which could greatly accelerate the discovery of new drugs and therapeutic targets. In addition, BioMedGPT-LM-7B is the first large generative language model based on Llama2 in the biomedical domain, therefore is commercial friendly. Both BioMedGPT-10B and BioMedGPT-LM-7B are open-sourced to the research community. In addition, we publish the datasets that are meticulously curated for the alignment of multi-modalities, i.e., PubChemQA and UniProtQA. All the models, codes, and datasets are available at https://github.com/PharMolix/OpenBioMed.

  • 7 authors
·
Aug 18, 2023

Robust Model-Based Optimization for Challenging Fitness Landscapes

Protein design, a grand challenge of the day, involves optimization on a fitness landscape, and leading methods adopt a model-based approach where a model is trained on a training set (protein sequences and fitness) and proposes candidates to explore next. These methods are challenged by sparsity of high-fitness samples in the training set, a problem that has been in the literature. A less recognized but equally important problem stems from the distribution of training samples in the design space: leading methods are not designed for scenarios where the desired optimum is in a region that is not only poorly represented in training data, but also relatively far from the highly represented low-fitness regions. We show that this problem of "separation" in the design space is a significant bottleneck in existing model-based optimization tools and propose a new approach that uses a novel VAE as its search model to overcome the problem. We demonstrate its advantage over prior methods in robustly finding improved samples, regardless of the imbalance and separation between low- and high-fitness training samples. Our comprehensive benchmark on real and semi-synthetic protein datasets as well as solution design for physics-informed neural networks, showcases the generality of our approach in discrete and continuous design spaces. Our implementation is available at https://github.com/sabagh1994/PGVAE.

  • 6 authors
·
May 22, 2023

BioT5+: Towards Generalized Biological Understanding with IUPAC Integration and Multi-task Tuning

Recent research trends in computational biology have increasingly focused on integrating text and bio-entity modeling, especially in the context of molecules and proteins. However, previous efforts like BioT5 faced challenges in generalizing across diverse tasks and lacked a nuanced understanding of molecular structures, particularly in their textual representations (e.g., IUPAC). This paper introduces BioT5+, an extension of the BioT5 framework, tailored to enhance biological research and drug discovery. BioT5+ incorporates several novel features: integration of IUPAC names for molecular understanding, inclusion of extensive bio-text and molecule data from sources like bioRxiv and PubChem, the multi-task instruction tuning for generality across tasks, and a novel numerical tokenization technique for improved processing of numerical data. These enhancements allow BioT5+ to bridge the gap between molecular representations and their textual descriptions, providing a more holistic understanding of biological entities, and largely improving the grounded reasoning of bio-text and bio-sequences. The model is pre-trained and fine-tuned with a large number of experiments, including 3 types of problems (classification, regression, generation), 15 kinds of tasks, and 21 total benchmark datasets, demonstrating the remarkable performance and state-of-the-art results in most cases. BioT5+ stands out for its ability to capture intricate relationships in biological data, thereby contributing significantly to bioinformatics and computational biology. Our code is available at https://github.com/QizhiPei/BioT5.

  • 9 authors
·
Feb 27, 2024

Protap: A Benchmark for Protein Modeling on Realistic Downstream Applications

Recently, extensive deep learning architectures and pretraining strategies have been explored to support downstream protein applications. Additionally, domain-specific models incorporating biological knowledge have been developed to enhance performance in specialized tasks. In this work, we introduce Protap, a comprehensive benchmark that systematically compares backbone architectures, pretraining strategies, and domain-specific models across diverse and realistic downstream protein applications. Specifically, Protap covers five applications: three general tasks and two novel specialized tasks, i.e., enzyme-catalyzed protein cleavage site prediction and targeted protein degradation, which are industrially relevant yet missing from existing benchmarks. For each application, Protap compares various domain-specific models and general architectures under multiple pretraining settings. Our empirical studies imply that: (i) Though large-scale pretraining encoders achieve great results, they often underperform supervised encoders trained on small downstream training sets. (ii) Incorporating structural information during downstream fine-tuning can match or even outperform protein language models pretrained on large-scale sequence corpora. (iii) Domain-specific biological priors can enhance performance on specialized downstream tasks. Code and datasets are publicly available at https://github.com/Trust-App-AI-Lab/protap.

  • 10 authors
·
Jun 1, 2025

AVIDa-hIL6: A Large-Scale VHH Dataset Produced from an Immunized Alpaca for Predicting Antigen-Antibody Interactions

Antibodies have become an important class of therapeutic agents to treat human diseases. To accelerate therapeutic antibody discovery, computational methods, especially machine learning, have attracted considerable interest for predicting specific interactions between antibody candidates and target antigens such as viruses and bacteria. However, the publicly available datasets in existing works have notable limitations, such as small sizes and the lack of non-binding samples and exact amino acid sequences. To overcome these limitations, we have developed AVIDa-hIL6, a large-scale dataset for predicting antigen-antibody interactions in the variable domain of heavy chain of heavy chain antibodies (VHHs), produced from an alpaca immunized with the human interleukin-6 (IL-6) protein, as antigens. By leveraging the simple structure of VHHs, which facilitates identification of full-length amino acid sequences by DNA sequencing technology, AVIDa-hIL6 contains 573,891 antigen-VHH pairs with amino acid sequences. All the antigen-VHH pairs have reliable labels for binding or non-binding, as generated by a novel labeling method. Furthermore, via introduction of artificial mutations, AVIDa-hIL6 contains 30 different mutants in addition to wild-type IL-6 protein. This characteristic provides opportunities to develop machine learning models for predicting changes in antibody binding by antigen mutations. We report experimental benchmark results on AVIDa-hIL6 by using neural network-based baseline models. The results indicate that the existing models have potential, but further research is needed to generalize them to predict effective antibodies against unknown mutants. The dataset is available at https://avida-hil6.cognanous.com.

  • 11 authors
·
Jun 5, 2023

FABind: Fast and Accurate Protein-Ligand Binding

Modeling the interaction between proteins and ligands and accurately predicting their binding structures is a critical yet challenging task in drug discovery. Recent advancements in deep learning have shown promise in addressing this challenge, with sampling-based and regression-based methods emerging as two prominent approaches. However, these methods have notable limitations. Sampling-based methods often suffer from low efficiency due to the need for generating multiple candidate structures for selection. On the other hand, regression-based methods offer fast predictions but may experience decreased accuracy. Additionally, the variation in protein sizes often requires external modules for selecting suitable binding pockets, further impacting efficiency. In this work, we propose FABind, an end-to-end model that combines pocket prediction and docking to achieve accurate and fast protein-ligand binding. FABind incorporates a unique ligand-informed pocket prediction module, which is also leveraged for docking pose estimation. The model further enhances the docking process by incrementally integrating the predicted pocket to optimize protein-ligand binding, reducing discrepancies between training and inference. Through extensive experiments on benchmark datasets, our proposed FABind demonstrates strong advantages in terms of effectiveness and efficiency compared to existing methods. Our code is available at https://github.com/QizhiPei/FABind

  • 10 authors
·
Oct 10, 2023

METAGENE-1: Metagenomic Foundation Model for Pandemic Monitoring

We pretrain METAGENE-1, a 7-billion-parameter autoregressive transformer model, which we refer to as a metagenomic foundation model, on a novel corpus of diverse metagenomic DNA and RNA sequences comprising over 1.5 trillion base pairs. This dataset is sourced from a large collection of human wastewater samples, processed and sequenced using deep metagenomic (next-generation) sequencing methods. Unlike genomic models that focus on individual genomes or curated sets of specific species, the aim of METAGENE-1 is to capture the full distribution of genomic information present within this wastewater, to aid in tasks relevant to pandemic monitoring and pathogen detection. We carry out byte-pair encoding (BPE) tokenization on our dataset, tailored for metagenomic sequences, and then pretrain our model. In this paper, we first detail the pretraining dataset, tokenization strategy, and model architecture, highlighting the considerations and design choices that enable the effective modeling of metagenomic data. We then show results of pretraining this model on our metagenomic dataset, providing details about our losses, system metrics, and training stability over the course of pretraining. Finally, we demonstrate the performance of METAGENE-1, which achieves state-of-the-art results on a set of genomic benchmarks and new evaluations focused on human-pathogen detection and genomic sequence embedding, showcasing its potential for public health applications in pandemic monitoring, biosurveillance, and early detection of emerging health threats.

  • 7 authors
·
Jan 3, 2025 2

Prot2Token: A Unified Framework for Protein Modeling via Next-Token Prediction

The diverse nature of protein prediction tasks has traditionally necessitated specialized models, hindering the development of broadly applicable and computationally efficient Protein Language Models (PLMs). In this work, we introduce Prot2Token, a unified framework that overcomes these challenges by converting a wide spectrum of protein-related predictions, from sequence-level properties and residue-specific attributes to complex inter-protein interactions, into a standardized next-token prediction format. At its core, Prot2Token employs an autoregressive decoder, conditioned on embeddings from pre-trained protein encoders and guided by learnable task tokens, to perform diverse predictions. This architecture uniquely facilitates multi-task learning, enabling a single model to master numerous tasks with improved efficiency. We present extensive experimental validation across a variety of benchmarks, demonstrating Prot2Tokens strong predictive power in different types of protein-prediction tasks. Key results include significant speedups (e.g., near 1000x over AlphaFold2 with MSA) and performance often matching or exceeding specialized approaches. Beyond that, we introduce an auxiliary self-supervised decoder pre-training approach to improve spatially sensitive task performance. Prot2Token thus offers a significant step towards a versatile, high-throughput paradigm for protein modeling, promising to accelerate biological discovery and the development of novel therapeutics. The code is available at https://github.com/mahdip72/prot2token .

  • 9 authors
·
May 26, 2025 2

UniSite: The First Cross-Structure Dataset and Learning Framework for End-to-End Ligand Binding Site Detection

The detection of ligand binding sites for proteins is a fundamental step in Structure-Based Drug Design. Despite notable advances in recent years, existing methods, datasets, and evaluation metrics are confronted with several key challenges: (1) current datasets and methods are centered on individual protein-ligand complexes and neglect that diverse binding sites may exist across multiple complexes of the same protein, introducing significant statistical bias; (2) ligand binding site detection is typically modeled as a discontinuous workflow, employing binary segmentation and subsequent clustering algorithms; (3) traditional evaluation metrics do not adequately reflect the actual performance of different binding site prediction methods. To address these issues, we first introduce UniSite-DS, the first UniProt (Unique Protein)-centric ligand binding site dataset, which contains 4.81 times more multi-site data and 2.08 times more overall data compared to the previously most widely used datasets. We then propose UniSite, the first end-to-end ligand binding site detection framework supervised by set prediction loss with bijective matching. In addition, we introduce Average Precision based on Intersection over Union (IoU) as a more accurate evaluation metric for ligand binding site prediction. Extensive experiments on UniSite-DS and several representative benchmark datasets demonstrate that IoU-based Average Precision provides a more accurate reflection of prediction quality, and that UniSite outperforms current state-of-the-art methods in ligand binding site detection. The dataset and codes will be made publicly available at https://github.com/quanlin-wu/unisite.

  • 4 authors
·
Jun 3, 2025

Modeling PROTAC Degradation Activity with Machine Learning

PROTACs are a promising therapeutic modality that harnesses the cell's built-in degradation machinery to degrade specific proteins. Despite their potential, developing new PROTACs is challenging and requires significant domain expertise, time, and cost. Meanwhile, machine learning has transformed drug design and development. In this work, we present a strategy for curating open-source PROTAC data and an open-source deep learning tool for predicting the degradation activity of novel PROTAC molecules. The curated dataset incorporates important information such as pDC_{50}, D_{max}, E3 ligase type, POI amino acid sequence, and experimental cell type. Our model architecture leverages learned embeddings from pretrained machine learning models, in particular for encoding protein sequences and cell type information. We assessed the quality of the curated data and the generalization ability of our model architecture against new PROTACs and targets via three tailored studies, which we recommend other researchers to use in evaluating their degradation activity models. In each study, three models predict protein degradation in a majority vote setting, reaching a top test accuracy of 82.6% and 0.848 ROC AUC, and a test accuracy of 61% and 0.615 ROC AUC when generalizing to novel protein targets. Our results are not only comparable to state-of-the-art models for protein degradation prediction, but also part of an open-source implementation which is easily reproducible and less computationally complex than existing approaches.

  • 4 authors
·
Jun 4, 2024

Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?

Toxicity remains a leading cause of early-stage drug development failure. Despite advances in molecular design and property prediction, the task of molecular toxicity repair - generating structurally valid molecular alternatives with reduced toxicity - has not yet been systematically defined or benchmarked. To fill this gap, we introduce ToxiMol, the first benchmark task for general-purpose Multimodal Large Language Models (MLLMs) focused on molecular toxicity repair. We construct a standardized dataset covering 11 primary tasks and 560 representative toxic molecules spanning diverse mechanisms and granularities. We design a prompt annotation pipeline with mechanism-aware and task-adaptive capabilities, informed by expert toxicological knowledge. In parallel, we propose an automated evaluation framework, ToxiEval, which integrates toxicity endpoint prediction, synthetic accessibility, drug-likeness, and structural similarity into a high-throughput evaluation chain for repair success. We systematically assess nearly 30 mainstream general-purpose MLLMs and design multiple ablation studies to analyze key factors such as evaluation criteria, candidate diversity, and failure attribution. Experimental results show that although current MLLMs still face significant challenges on this task, they begin to demonstrate promising capabilities in toxicity understanding, semantic constraint adherence, and structure-aware molecule editing.

  • 8 authors
·
Jun 12, 2025

Deep Learning for Protein-Ligand Docking: Are We There Yet?

The effects of ligand binding on protein structures and their in vivo functions carry numerous implications for modern biomedical research and biotechnology development efforts such as drug discovery. Although several deep learning (DL) methods and benchmarks designed for protein-ligand docking have recently been introduced, to date no prior works have systematically studied the behavior of the latest docking and structure prediction methods within the broadly applicable context of (1) using predicted (apo) protein structures for docking (e.g., for applicability to new proteins); (2) binding multiple (cofactor) ligands concurrently to a given target protein (e.g., for enzyme design); and (3) having no prior knowledge of binding pockets (e.g., for generalization to unknown pockets). To enable a deeper understanding of docking methods' real-world utility, we introduce PoseBench, the first comprehensive benchmark for broadly applicable protein-ligand docking. PoseBench enables researchers to rigorously and systematically evaluate DL methods for apo-to-holo protein-ligand docking and protein-ligand structure prediction using both primary ligand and multi-ligand benchmark datasets, the latter of which we introduce for the first time to the DL community. Empirically, using PoseBench, we find that (1) DL co-folding methods generally outperform comparable conventional and DL docking baselines, yet popular methods such as AlphaFold 3 are still challenged by prediction targets with novel protein sequences; (2) certain DL co-folding methods are highly sensitive to their input multiple sequence alignments, while others are not; and (3) DL methods struggle to strike a balance between structural accuracy and chemical specificity when predicting novel or multi-ligand protein targets. Code, data, tutorials, and benchmark results are available at https://github.com/BioinfoMachineLearning/PoseBench.

  • 5 authors
·
May 22, 2024

BIOMEDICA: An Open Biomedical Image-Caption Archive, Dataset, and Vision-Language Models Derived from Scientific Literature

The development of vision-language models (VLMs) is driven by large-scale and diverse multimodal datasets. However, progress toward generalist biomedical VLMs is limited by the lack of annotated, publicly accessible datasets across biology and medicine. Existing efforts are restricted to narrow domains, missing the full diversity of biomedical knowledge encoded in scientific literature. To address this gap, we introduce BIOMEDICA, a scalable, open-source framework to extract, annotate, and serialize the entirety of the PubMed Central Open Access subset into an easy-to-use, publicly accessible dataset.Our framework produces a comprehensive archive with over 24 million unique image-text pairs from over 6 million articles. Metadata and expert-guided annotations are also provided. We demonstrate the utility and accessibility of our resource by releasing BMCA-CLIP, a suite of CLIP-style models continuously pre-trained on the BIOMEDICA dataset via streaming, eliminating the need to download 27 TB of data locally.On average, our models achieve state-of-the-art performance across 40 tasks - spanning pathology, radiology, ophthalmology, dermatology, surgery, molecular biology, parasitology, and cell biology - excelling in zero-shot classification with a 6.56% average improvement (as high as 29.8% and 17.5% in dermatology and ophthalmology, respectively), and stronger image-text retrieval, all while using 10x less compute. To foster reproducibility and collaboration, we release our codebase and dataset for the broader research community.

  • 16 authors
·
Jan 13, 2025 3

From Microbes to Methane: AI-Based Predictive Modeling of Feed Additive Efficacy in Dairy Cows

In an era of increasing pressure to achieve sustainable agriculture, the optimization of livestock feed for enhancing yield and minimizing environmental impact is a paramount objective. This study presents a pioneering approach towards this goal, using rumen microbiome data to predict the efficacy of feed additives in dairy cattle. We collected an extensive dataset that includes methane emissions from 2,190 Holstein cows distributed across 34 distinct sites. The cows were divided into control and experimental groups in a double-blind, unbiased manner, accounting for variables such as age, days in lactation, and average milk yield. The experimental groups were administered one of four leading commercial feed additives: Agolin, Kexxtone, Allimax, and Relyon. Methane emissions were measured individually both before the administration of additives and over a subsequent 12-week period. To develop our predictive model for additive efficacy, rumen microbiome samples were collected from 510 cows from the same herds prior to the study's onset. These samples underwent deep metagenomic shotgun sequencing, yielding an average of 15.7 million reads per sample. Utilizing innovative artificial intelligence techniques we successfully estimated the efficacy of these feed additives across different farms. The model's robustness was further confirmed through validation with independent cohorts, affirming its generalizability and reliability. Our results underscore the transformative capability of using targeted feed additive strategies to both optimize dairy yield and milk composition, and to significantly reduce methane emissions. Specifically, our predictive model demonstrates a scenario where its application could guide the assignment of additives to farms where they are most effective. In doing so, we could achieve an average potential reduction of over 27\% in overall emissions.

  • 3 authors
·
Nov 21, 2023

Cross-Modal Translation and Alignment for Survival Analysis

With the rapid advances in high-throughput sequencing technologies, the focus of survival analysis has shifted from examining clinical indicators to incorporating genomic profiles with pathological images. However, existing methods either directly adopt a straightforward fusion of pathological features and genomic profiles for survival prediction, or take genomic profiles as guidance to integrate the features of pathological images. The former would overlook intrinsic cross-modal correlations. The latter would discard pathological information irrelevant to gene expression. To address these issues, we present a Cross-Modal Translation and Alignment (CMTA) framework to explore the intrinsic cross-modal correlations and transfer potential complementary information. Specifically, we construct two parallel encoder-decoder structures for multi-modal data to integrate intra-modal information and generate cross-modal representation. Taking the generated cross-modal representation to enhance and recalibrate intra-modal representation can significantly improve its discrimination for comprehensive survival analysis. To explore the intrinsic crossmodal correlations, we further design a cross-modal attention module as the information bridge between different modalities to perform cross-modal interactions and transfer complementary information. Our extensive experiments on five public TCGA datasets demonstrate that our proposed framework outperforms the state-of-the-art methods.

  • 2 authors
·
Sep 22, 2023

Fine-Tuning Discrete Diffusion Models via Reward Optimization with Applications to DNA and Protein Design

Recent studies have demonstrated the strong empirical performance of diffusion models on discrete sequences across domains from natural language to biological sequence generation. For example, in the protein inverse folding task, conditional diffusion models have achieved impressive results in generating natural-like sequences that fold back into the original structure. However, practical design tasks often require not only modeling a conditional distribution but also optimizing specific task objectives. For instance, we may prefer protein sequences with high stability. To address this, we consider the scenario where we have pre-trained discrete diffusion models that can generate natural-like sequences, as well as reward models that map sequences to task objectives. We then formulate the reward maximization problem within discrete diffusion models, analogous to reinforcement learning (RL), while minimizing the KL divergence against pretrained diffusion models to preserve naturalness. To solve this RL problem, we propose a novel algorithm, DRAKES, that enables direct backpropagation of rewards through entire trajectories generated by diffusion models, by making the originally non-differentiable trajectories differentiable using the Gumbel-Softmax trick. Our theoretical analysis indicates that our approach can generate sequences that are both natural-like and yield high rewards. While similar tasks have been recently explored in diffusion models for continuous domains, our work addresses unique algorithmic and theoretical challenges specific to discrete diffusion models, which arise from their foundation in continuous-time Markov chains rather than Brownian motion. Finally, we demonstrate the effectiveness of DRAKES in generating DNA and protein sequences that optimize enhancer activity and protein stability, respectively, important tasks for gene therapies and protein-based therapeutics.

  • 10 authors
·
Oct 17, 2024

Leveraging Biomolecule and Natural Language through Multi-Modal Learning: A Survey

The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology. This approach leverages the rich, multifaceted descriptions of biomolecules contained within textual data sources to enhance our fundamental understanding and enable downstream computational tasks such as biomolecule property prediction. The fusion of the nuanced narratives expressed through natural language with the structural and functional specifics of biomolecules described via various molecular modeling techniques opens new avenues for comprehensively representing and analyzing biomolecules. By incorporating the contextual language data that surrounds biomolecules into their modeling, BL aims to capture a holistic view encompassing both the symbolic qualities conveyed through language as well as quantitative structural characteristics. In this review, we provide an extensive analysis of recent advancements achieved through cross modeling of biomolecules and natural language. (1) We begin by outlining the technical representations of biomolecules employed, including sequences, 2D graphs, and 3D structures. (2) We then examine in depth the rationale and key objectives underlying effective multi-modal integration of language and molecular data sources. (3) We subsequently survey the practical applications enabled to date in this developing research area. (4) We also compile and summarize the available resources and datasets to facilitate future work. (5) Looking ahead, we identify several promising research directions worthy of further exploration and investment to continue advancing the field. The related resources and contents are updating in https://github.com/QizhiPei/Awesome-Biomolecule-Language-Cross-Modeling.

  • 8 authors
·
Mar 3, 2024

Bayesian active learning for optimization and uncertainty quantification in protein docking

Motivation: Ab initio protein docking represents a major challenge for optimizing a noisy and costly "black box"-like function in a high-dimensional space. Despite progress in this field, there is no docking method available for rigorous uncertainty quantification (UQ) of its solution quality (e.g. interface RMSD or iRMSD). Results: We introduce a novel algorithm, Bayesian Active Learning (BAL), for optimization and UQ of such black-box functions and flexible protein docking. BAL directly models the posterior distribution of the global optimum (or native structures for protein docking) with active sampling and posterior estimation iteratively feeding each other. Furthermore, we use complex normal modes to represent a homogeneous Euclidean conformation space suitable for high-dimension optimization and construct funnel-like energy models for encounter complexes. Over a protein docking benchmark set and a CAPRI set including homology docking, we establish that BAL significantly improve against both starting points by rigid docking and refinements by particle swarm optimization, providing for one third targets a top-3 near-native prediction. BAL also generates tight confidence intervals with half range around 25% of iRMSD and confidence level at 85%. Its estimated probability of a prediction being native or not achieves binary classification AUROC at 0.93 and AUPRC over 0.60 (compared to 0.14 by chance); and also found to help ranking predictions. To the best of our knowledge, this study represents the first uncertainty quantification solution for protein docking, with theoretical rigor and comprehensive assessment. Source codes are available at https://github.com/Shen-Lab/BAL.

  • 2 authors
·
Jan 31, 2019

CRISP-SAM2: SAM2 with Cross-Modal Interaction and Semantic Prompting for Multi-Organ Segmentation

Multi-organ medical segmentation is a crucial component of medical image processing, essential for doctors to make accurate diagnoses and develop effective treatment plans. Despite significant progress in this field, current multi-organ segmentation models often suffer from inaccurate details, dependence on geometric prompts and loss of spatial information. Addressing these challenges, we introduce a novel model named CRISP-SAM2 with CRoss-modal Interaction and Semantic Prompting based on SAM2. This model represents a promising approach to multi-organ medical segmentation guided by textual descriptions of organs. Our method begins by converting visual and textual inputs into cross-modal contextualized semantics using a progressive cross-attention interaction mechanism. These semantics are then injected into the image encoder to enhance the detailed understanding of visual information. To eliminate reliance on geometric prompts, we use a semantic prompting strategy, replacing the original prompt encoder to sharpen the perception of challenging targets. In addition, a similarity-sorting self-updating strategy for memory and a mask-refining process is applied to further adapt to medical imaging and enhance localized details. Comparative experiments conducted on seven public datasets indicate that CRISP-SAM2 outperforms existing models. Extensive analysis also demonstrates the effectiveness of our method, thereby confirming its superior performance, especially in addressing the limitations mentioned earlier. Our code is available at: https://github.com/YU-deep/CRISP\_SAM2.git.

  • 8 authors
·
Jun 29, 2025 1

Gumbel-Softmax Flow Matching with Straight-Through Guidance for Controllable Biological Sequence Generation

Flow matching in the continuous simplex has emerged as a promising strategy for DNA sequence design, but struggles to scale to higher simplex dimensions required for peptide and protein generation. We introduce Gumbel-Softmax Flow and Score Matching, a generative framework on the simplex based on a novel Gumbel-Softmax interpolant with a time-dependent temperature. Using this interpolant, we introduce Gumbel-Softmax Flow Matching by deriving a parameterized velocity field that transports from smooth categorical distributions to distributions concentrated at a single vertex of the simplex. We alternatively present Gumbel-Softmax Score Matching which learns to regress the gradient of the probability density. Our framework enables high-quality, diverse generation and scales efficiently to higher-dimensional simplices. To enable training-free guidance, we propose Straight-Through Guided Flows (STGFlow), a classifier-based guidance method that leverages straight-through estimators to steer the unconditional velocity field toward optimal vertices of the simplex. STGFlow enables efficient inference-time guidance using classifiers pre-trained on clean sequences, and can be used with any discrete flow method. Together, these components form a robust framework for controllable de novo sequence generation. We demonstrate state-of-the-art performance in conditional DNA promoter design, sequence-only protein generation, and target-binding peptide design for rare disease treatment.

  • 4 authors
·
Mar 21, 2025 3

Characterizing virulence differences in a parasitoid wasp through comparative transcriptomic and proteomic

Background: Two strains of the endoparasitoid Cotesia typhae present a differential parasitism success on the host, Sesamia nonagrioides. One is virulent on both permissive and resistant host populations, and the other only on the permissive host. This interaction provides a very interesting frame for studying virulence factors. Here, we used a combination of comparative transcriptomic and proteomic analyses to unravel the molecular basis underlying virulence differences between the strains.Results: First, we report that virulence genes are mostly expressed during the nymphal stage of the parasitoid. Especially, proviral genes are broadly up-regulated at this stage, while their expression is only expected in the host. Parasitoid gene expression in the host increases with time, indicating the production of more virulence factors. Secondly, comparison between strains reveals differences in venom composition, with 12 proteins showing differential abundance. Proviral expression in the host displays a strong temporal variability, along with differential patterns between strains. Notably, a subset of proviral genes including protein-tyrosine phosphatases is specifically over-expressed in the resistant host parasitized by the less virulent strain, 24 hours after parasitism. This result particularly hints at host modulation of proviral expression.Conclusions: This study sheds light on the temporal expression of virulence factors of Cotesia typhae, both in the host and in the parasitoid. It also identifies potential molecular candidates driving differences in parasitism success between two strains. Together, those findings provide a path for further exploration of virulence mechanisms in parasitoid wasps, and offer insights into host-parasitoid coevolution.

  • 6 authors
·
May 13, 2024

Diffusion Sequence Models for Enhanced Protein Representation and Generation

Proteins are fundamental to biology, executing diverse functions through complex physicochemical interactions, and they hold transformative potential across medicine, materials science, and environmental applications. Protein Language Models (pLMs) aim to unlock insights from the vast space of unlabeled protein sequences by learning rich, semantic representations from primary sequences via masked language modeling. However, these models typically exhibit limited generative capacity. In this work, we introduce the Diffusion Sequence Model (DSM), a novel pLM trained with masked diffusion to enable both high-quality representation learning and generative protein design. DSM builds upon the ESM2 architecture by incorporating a masked forward diffusion process inspired by the LLaDA framework. After training, DSM is capable of generating diverse, biomimetic sequences that align with expected amino acid compositions, secondary structures, and predicted functions, even with 90\% token corruption. Furthermore, DSM's learned representations match or exceed those of similarly sized pLMs on downstream tasks. We also introduce DSM(ppi), a variant fine-tuned to generate protein binders by attending to target sequences. We demonstrate DSM(ppi)'s effectiveness on the challenging Bench-tested Binder Benchmark (BenchBB), where both DSM and DSM(ppi) produce candidates with superior predicted binding affinity compared to known binders. Our results establish masked diffusion as a powerful paradigm for unifying protein representation and generation in a single framework.

  • 4 authors
·
Jun 9, 2025

BiomedSQL: Text-to-SQL for Scientific Reasoning on Biomedical Knowledge Bases

Biomedical researchers increasingly rely on large-scale structured databases for complex analytical tasks. However, current text-to-SQL systems often struggle to map qualitative scientific questions into executable SQL, particularly when implicit domain reasoning is required. We introduce BiomedSQL, the first benchmark explicitly designed to evaluate scientific reasoning in text-to-SQL generation over a real-world biomedical knowledge base. BiomedSQL comprises 68,000 question/SQL query/answer triples grounded in a harmonized BigQuery knowledge base that integrates gene-disease associations, causal inference from omics data, and drug approval records. Each question requires models to infer domain-specific criteria, such as genome-wide significance thresholds, effect directionality, or trial phase filtering, rather than rely on syntactic translation alone. We evaluate a range of open- and closed-source LLMs across prompting strategies and interaction paradigms. Our results reveal a substantial performance gap: GPT-o3-mini achieves 59.0% execution accuracy, while our custom multi-step agent, BMSQL, reaches 62.6%, both well below the expert baseline of 90.0%. BiomedSQL provides a new foundation for advancing text-to-SQL systems capable of supporting scientific discovery through robust reasoning over structured biomedical knowledge bases. Our dataset is publicly available at https://huggingface.co/datasets/NIH-CARD/BiomedSQL, and our code is open-source at https://github.com/NIH-CARD/biomedsql.

  • 11 authors
·
May 23, 2025 2

Efficient and Scalable Fine-Tune of Language Models for Genome Understanding

Although DNA foundation models have advanced the understanding of genomes, they still face significant challenges in the limited scale and diversity of genomic data. This limitation starkly contrasts with the success of natural language foundation models, which thrive on substantially larger scales. Furthermore, genome understanding involves numerous downstream genome annotation tasks with inherent data heterogeneity, thereby necessitating more efficient and robust fine-tuning methods tailored for genomics. Here, we present Lingo: Language prefix fIne-tuning for GenOmes. Unlike DNA foundation models, Lingo strategically leverages natural language foundation models' contextual cues, recalibrating their linguistic knowledge to genomic sequences. Lingo further accommodates numerous, heterogeneous downstream fine-tune tasks by an adaptive rank sampling method that prunes and stochastically reintroduces pruned singular vectors within small computational budgets. Adaptive rank sampling outperformed existing fine-tuning methods on all benchmarked 14 genome understanding tasks, while requiring fewer than 2\% of trainable parameters as genomic-specific adapters. Impressively, applying these adapters on natural language foundation models matched or even exceeded the performance of DNA foundation models. Lingo presents a new paradigm of efficient and scalable genome understanding via genomic-specific adapters on language models.

  • 3 authors
·
Feb 12, 2024

Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval

The ability to accurately model the fitness landscape of protein sequences is critical to a wide range of applications, from quantifying the effects of human variants on disease likelihood, to predicting immune-escape mutations in viruses and designing novel biotherapeutic proteins. Deep generative models of protein sequences trained on multiple sequence alignments have been the most successful approaches so far to address these tasks. The performance of these methods is however contingent on the availability of sufficiently deep and diverse alignments for reliable training. Their potential scope is thus limited by the fact many protein families are hard, if not impossible, to align. Large language models trained on massive quantities of non-aligned protein sequences from diverse families address these problems and show potential to eventually bridge the performance gap. We introduce Tranception, a novel transformer architecture leveraging autoregressive predictions and retrieval of homologous sequences at inference to achieve state-of-the-art fitness prediction performance. Given its markedly higher performance on multiple mutants, robustness to shallow alignments and ability to score indels, our approach offers significant gain of scope over existing approaches. To enable more rigorous model testing across a broader range of protein families, we develop ProteinGym -- an extensive set of multiplexed assays of variant effects, substantially increasing both the number and diversity of assays compared to existing benchmarks.

  • 7 authors
·
May 27, 2022

DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization

Recently, 3D generative models have shown promising performances in structure-based drug design by learning to generate ligands given target binding sites. However, only modeling the target-ligand distribution can hardly fulfill one of the main goals in drug discovery -- designing novel ligands with desired properties, e.g., high binding affinity, easily synthesizable, etc. This challenge becomes particularly pronounced when the target-ligand pairs used for training do not align with these desired properties. Moreover, most existing methods aim at solving de novo design task, while many generative scenarios requiring flexible controllability, such as R-group optimization and scaffold hopping, have received little attention. In this work, we propose DecompOpt, a structure-based molecular optimization method based on a controllable and decomposed diffusion model. DecompOpt presents a new generation paradigm which combines optimization with conditional diffusion models to achieve desired properties while adhering to the molecular grammar. Additionally, DecompOpt offers a unified framework covering both de novo design and controllable generation. To achieve so, ligands are decomposed into substructures which allows fine-grained control and local optimization. Experiments show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines, and demonstrate great potential in controllable generation tasks.

  • 6 authors
·
Mar 6, 2024

Omni-DNA: A Unified Genomic Foundation Model for Cross-Modal and Multi-Task Learning

Large Language Models (LLMs) demonstrate remarkable generalizability across diverse tasks, yet genomic foundation models (GFMs) still require separate finetuning for each downstream application, creating significant overhead as model sizes grow. Moreover, existing GFMs are constrained by rigid output formats, limiting their applicability to various genomic tasks. In this work, we revisit the transformer-based auto-regressive models and introduce Omni-DNA, a family of cross-modal multi-task models ranging from 20 million to 1 billion parameters. Our approach consists of two stages: (i) pretraining on DNA sequences with next token prediction objective, and (ii) expanding the multi-modal task-specific tokens and finetuning for multiple downstream tasks simultaneously. When evaluated on the Nucleotide Transformer and GB benchmarks, Omni-DNA achieves state-of-the-art performance on 18 out of 26 tasks. Through multi-task finetuning, Omni-DNA addresses 10 acetylation and methylation tasks at once, surpassing models trained on each task individually. Finally, we design two complex genomic tasks, DNA2Function and Needle-in-DNA, which map DNA sequences to textual functional descriptions and images, respectively, indicating Omni-DNA's cross-modal capabilities to broaden the scope of genomic applications. All the models are available through https://huggingface.co/collections/zehui127

  • 7 authors
·
Feb 5, 2025

Gene-Metabolite Association Prediction with Interactive Knowledge Transfer Enhanced Graph for Metabolite Production

In the rapidly evolving field of metabolic engineering, the quest for efficient and precise gene target identification for metabolite production enhancement presents significant challenges. Traditional approaches, whether knowledge-based or model-based, are notably time-consuming and labor-intensive, due to the vast scale of research literature and the approximation nature of genome-scale metabolic model (GEM) simulations. Therefore, we propose a new task, Gene-Metabolite Association Prediction based on metabolic graphs, to automate the process of candidate gene discovery for a given pair of metabolite and candidate-associated genes, as well as presenting the first benchmark containing 2474 metabolites and 1947 genes of two commonly used microorganisms Saccharomyces cerevisiae (SC) and Issatchenkia orientalis (IO). This task is challenging due to the incompleteness of the metabolic graphs and the heterogeneity among distinct metabolisms. To overcome these limitations, we propose an Interactive Knowledge Transfer mechanism based on Metabolism Graph (IKT4Meta), which improves the association prediction accuracy by integrating the knowledge from different metabolism graphs. First, to build a bridge between two graphs for knowledge transfer, we utilize Pretrained Language Models (PLMs) with external knowledge of genes and metabolites to help generate inter-graph links, significantly alleviating the impact of heterogeneity. Second, we propagate intra-graph links from different metabolic graphs using inter-graph links as anchors. Finally, we conduct the gene-metabolite association prediction based on the enriched metabolism graphs, which integrate the knowledge from multiple microorganisms. Experiments on both types of organisms demonstrate that our proposed methodology outperforms baselines by up to 12.3% across various link prediction frameworks.

  • 6 authors
·
Oct 24, 2024

Annotation-guided Protein Design with Multi-Level Domain Alignment

The core challenge of de novo protein design lies in creating proteins with specific functions or properties, guided by certain conditions. Current models explore to generate protein using structural and evolutionary guidance, which only provide indirect conditions concerning functions and properties. However, textual annotations of proteins, especially the annotations for protein domains, which directly describe the protein's high-level functionalities, properties, and their correlation with target amino acid sequences, remain unexplored in the context of protein design tasks. In this paper, we propose Protein-Annotation Alignment Generation, PAAG, a multi-modality protein design framework that integrates the textual annotations extracted from protein database for controllable generation in sequence space. Specifically, within a multi-level alignment module, PAAG can explicitly generate proteins containing specific domains conditioned on the corresponding domain annotations, and can even design novel proteins with flexible combinations of different kinds of annotations. Our experimental results underscore the superiority of the aligned protein representations from PAAG over 7 prediction tasks. Furthermore, PAAG demonstrates a significant increase in generation success rate (24.7% vs 4.7% in zinc finger, and 54.3% vs 22.0% in the immunoglobulin domain) in comparison to the existing model. We anticipate that PAAG will broaden the horizons of protein design by leveraging the knowledge from between textual annotation and proteins.

  • 9 authors
·
Apr 18, 2024

Can large language models democratize access to dual-use biotechnology?

Large language models (LLMs) such as those embedded in 'chatbots' are accelerating and democratizing research by providing comprehensible information and expertise from many different fields. However, these models may also confer easy access to dual-use technologies capable of inflicting great harm. To evaluate this risk, the 'Safeguarding the Future' course at MIT tasked non-scientist students with investigating whether LLM chatbots could be prompted to assist non-experts in causing a pandemic. In one hour, the chatbots suggested four potential pandemic pathogens, explained how they can be generated from synthetic DNA using reverse genetics, supplied the names of DNA synthesis companies unlikely to screen orders, identified detailed protocols and how to troubleshoot them, and recommended that anyone lacking the skills to perform reverse genetics engage a core facility or contract research organization. Collectively, these results suggest that LLMs will make pandemic-class agents widely accessible as soon as they are credibly identified, even to people with little or no laboratory training. Promising nonproliferation measures include pre-release evaluations of LLMs by third parties, curating training datasets to remove harmful concepts, and verifiably screening all DNA generated by synthesis providers or used by contract research organizations and robotic cloud laboratories to engineer organisms or viruses.

  • 5 authors
·
Jun 6, 2023