- DependEval: Benchmarking LLMs for Repository Dependency Understanding While large language models (LLMs) have shown considerable promise in code generation, real-world software development demands advanced repository-level reasoning. This includes understanding dependencies, project structures, and managing multi-file changes. However, the ability of LLMs to effectively comprehend and handle complex code repositories has yet to be fully explored. To address challenges, we introduce a hierarchical benchmark designed to evaluate repository dependency understanding (DependEval). Benchmark is based on 15,576 repositories collected from real-world websites. It evaluates models on three core tasks: Dependency Recognition, Repository Construction, and Multi-file Editing, across 8 programming languages from actual code repositories. Our evaluation of over 25 LLMs reveals substantial performance gaps and provides valuable insights into repository-level code understanding. 7 authors · Mar 9, 2025
- Efficient Dependency-Guided Named Entity Recognition Named entity recognition (NER), which focuses on the extraction of semantically meaningful named entities and their semantic classes from text, serves as an indispensable component for several down-stream natural language processing (NLP) tasks such as relation extraction and event extraction. Dependency trees, on the other hand, also convey crucial semantic-level information. It has been shown previously that such information can be used to improve the performance of NER (Sasano and Kurohashi 2008, Ling and Weld 2012). In this work, we investigate on how to better utilize the structured information conveyed by dependency trees to improve the performance of NER. Specifically, unlike existing approaches which only exploit dependency information for designing local features, we show that certain global structured information of the dependency trees can be exploited when building NER models where such information can provide guided learning and inference. Through extensive experiments, we show that our proposed novel dependency-guided NER model performs competitively with models based on conventional semi-Markov conditional random fields, while requiring significantly less running time. 3 authors · Oct 19, 2018
- EmotionIC: Emotional Inertia and Contagion-driven Dependency Modelling for Emotion Recognition in Conversation Emotion Recognition in Conversation (ERC) has attracted growing attention in recent years as a result of the advancement and implementation of human-computer interface technologies. However, previous approaches to modeling global and local context dependencies lost the diversity of dependency information and do not take the context dependency into account at the classification level. In this paper, we propose a novel approach to dependency modeling driven by Emotional Inertia and Contagion (EmotionIC) for conversational emotion recognition at the feature extraction and classification levels. At the feature extraction level, our designed Identity Masked Multi-head Attention (IM-MHA) captures the identity-based long-distant context in the dialogue to contain the diverse influence of different participants and construct the global emotional atmosphere, while the devised Dialogue-based Gate Recurrent Unit (DialogGRU) that aggregates the emotional tendencies of dyadic dialogue is applied to refine the contextual features with inter- and intra-speaker dependencies. At the classification level, by introducing skip connections in Conditional Random Field (CRF), we elaborate the Skip-chain CRF (SkipCRF) to capture the high-order dependencies within and between speakers, and to emulate the emotional flow of distant participants. Experimental results show that our method can significantly outperform the state-of-the-art models on four benchmark datasets. The ablation studies confirm that our modules can effectively model emotional inertia and contagion. 4 authors · Mar 20, 2023
- Dependency-Guided LSTM-CRF for Named Entity Recognition Dependency tree structures capture long-distance and syntactic relationships between words in a sentence. The syntactic relations (e.g., nominal subject, object) can potentially infer the existence of certain named entities. In addition, the performance of a named entity recognizer could benefit from the long-distance dependencies between the words in dependency trees. In this work, we propose a simple yet effective dependency-guided LSTM-CRF model to encode the complete dependency trees and capture the above properties for the task of named entity recognition (NER). The data statistics show strong correlations between the entity types and dependency relations. We conduct extensive experiments on several standard datasets and demonstrate the effectiveness of the proposed model in improving NER and achieving state-of-the-art performance. Our analysis reveals that the significant improvements mainly result from the dependency relations and long-distance interactions provided by dependency trees. 2 authors · Sep 23, 2019
- Leveraging Spatio-Temporal Dependency for Skeleton-Based Action Recognition Skeleton-based action recognition has attracted considerable attention due to its compact representation of the human body's skeletal sructure. Many recent methods have achieved remarkable performance using graph convolutional networks (GCNs) and convolutional neural networks (CNNs), which extract spatial and temporal features, respectively. Although spatial and temporal dependencies in the human skeleton have been explored separately, spatio-temporal dependency is rarely considered. In this paper, we propose the Spatio-Temporal Curve Network (STC-Net) to effectively leverage the spatio-temporal dependency of the human skeleton. Our proposed network consists of two novel elements: 1) The Spatio-Temporal Curve (STC) module; and 2) Dilated Kernels for Graph Convolution (DK-GC). The STC module dynamically adjusts the receptive field by identifying meaningful node connections between every adjacent frame and generating spatio-temporal curves based on the identified node connections, providing an adaptive spatio-temporal coverage. In addition, we propose DK-GC to consider long-range dependencies, which results in a large receptive field without any additional parameters by applying an extended kernel to the given adjacency matrices of the graph. Our STC-Net combines these two modules and achieves state-of-the-art performance on four skeleton-based action recognition benchmarks. 6 authors · Dec 9, 2022
25 Self-Recognition in Language Models A rapidly growing number of applications rely on a small set of closed-source language models (LMs). This dependency might introduce novel security risks if LMs develop self-recognition capabilities. Inspired by human identity verification methods, we propose a novel approach for assessing self-recognition in LMs using model-generated "security questions". Our test can be externally administered to keep track of frontier models as it does not require access to internal model parameters or output probabilities. We use our test to examine self-recognition in ten of the most capable open- and closed-source LMs currently publicly available. Our extensive experiments found no empirical evidence of general or consistent self-recognition in any examined LM. Instead, our results suggest that given a set of alternatives, LMs seek to pick the "best" answer, regardless of its origin. Moreover, we find indications that preferences about which models produce the best answers are consistent across LMs. We additionally uncover novel insights on position bias considerations for LMs in multiple-choice settings. 6 authors · Jul 9, 2024 2
- VOLO: Vision Outlooker for Visual Recognition Visual recognition has been dominated by convolutional neural networks (CNNs) for years. Though recently the prevailing vision transformers (ViTs) have shown great potential of self-attention based models in ImageNet classification, their performance is still inferior to that of the latest SOTA CNNs if no extra data are provided. In this work, we try to close the performance gap and demonstrate that attention-based models are indeed able to outperform CNNs. We find a major factor limiting the performance of ViTs for ImageNet classification is their low efficacy in encoding fine-level features into the token representations. To resolve this, we introduce a novel outlook attention and present a simple and general architecture, termed Vision Outlooker (VOLO). Unlike self-attention that focuses on global dependency modeling at a coarse level, the outlook attention efficiently encodes finer-level features and contexts into tokens, which is shown to be critically beneficial to recognition performance but largely ignored by the self-attention. Experiments show that our VOLO achieves 87.1% top-1 accuracy on ImageNet-1K classification, which is the first model exceeding 87% accuracy on this competitive benchmark, without using any extra training data In addition, the pre-trained VOLO transfers well to downstream tasks, such as semantic segmentation. We achieve 84.3% mIoU score on the cityscapes validation set and 54.3% on the ADE20K validation set. Code is available at https://github.com/sail-sg/volo. 5 authors · Jun 24, 2021
- Improving Speech Recognition Error Prediction for Modern and Off-the-shelf Speech Recognizers Modeling the errors of a speech recognizer can help simulate errorful recognized speech data from plain text, which has proven useful for tasks like discriminative language modeling, improving robustness of NLP systems, where limited or even no audio data is available at train time. Previous work typically considered replicating behavior of GMM-HMM based systems, but the behavior of more modern posterior-based neural network acoustic models is not the same and requires adjustments to the error prediction model. In this work, we extend a prior phonetic confusion based model for predicting speech recognition errors in two ways: first, we introduce a sampling-based paradigm that better simulates the behavior of a posterior-based acoustic model. Second, we investigate replacing the confusion matrix with a sequence-to-sequence model in order to introduce context dependency into the prediction. We evaluate the error predictors in two ways: first by predicting the errors made by a Switchboard ASR system on unseen data (Fisher), and then using that same predictor to estimate the behavior of an unrelated cloud-based ASR system on a novel task. Sampling greatly improves predictive accuracy within a 100-guess paradigm, while the sequence model performs similarly to the confusion matrix. 3 authors · Aug 20, 2024
- DepNeCTI: Dependency-based Nested Compound Type Identification for Sanskrit Multi-component compounding is a prevalent phenomenon in Sanskrit, and understanding the implicit structure of a compound's components is crucial for deciphering its meaning. Earlier approaches in Sanskrit have focused on binary compounds and neglected the multi-component compound setting. This work introduces the novel task of nested compound type identification (NeCTI), which aims to identify nested spans of a multi-component compound and decode the implicit semantic relations between them. To the best of our knowledge, this is the first attempt in the field of lexical semantics to propose this task. We present 2 newly annotated datasets including an out-of-domain dataset for this task. We also benchmark these datasets by exploring the efficacy of the standard problem formulations such as nested named entity recognition, constituency parsing and seq2seq, etc. We present a novel framework named DepNeCTI: Dependency-based Nested Compound Type Identifier that surpasses the performance of the best baseline with an average absolute improvement of 13.1 points F1-score in terms of Labeled Span Score (LSS) and a 5-fold enhancement in inference efficiency. In line with the previous findings in the binary Sanskrit compound identification task, context provides benefits for the NeCTI task. The codebase and datasets are publicly available at: https://github.com/yaswanth-iitkgp/DepNeCTI 7 authors · Oct 14, 2023
2 LRDif: Diffusion Models for Under-Display Camera Emotion Recognition This study introduces LRDif, a novel diffusion-based framework designed specifically for facial expression recognition (FER) within the context of under-display cameras (UDC). To address the inherent challenges posed by UDC's image degradation, such as reduced sharpness and increased noise, LRDif employs a two-stage training strategy that integrates a condensed preliminary extraction network (FPEN) and an agile transformer network (UDCformer) to effectively identify emotion labels from UDC images. By harnessing the robust distribution mapping capabilities of Diffusion Models (DMs) and the spatial dependency modeling strength of transformers, LRDif effectively overcomes the obstacles of noise and distortion inherent in UDC environments. Comprehensive experiments on standard FER datasets including RAF-DB, KDEF, and FERPlus, LRDif demonstrate state-of-the-art performance, underscoring its potential in advancing FER applications. This work not only addresses a significant gap in the literature by tackling the UDC challenge in FER but also sets a new benchmark for future research in the field. 3 authors · Jan 31, 2024
2 MAFormer: A Transformer Network with Multi-scale Attention Fusion for Visual Recognition Vision Transformer and its variants have demonstrated great potential in various computer vision tasks. But conventional vision transformers often focus on global dependency at a coarse level, which suffer from a learning challenge on global relationships and fine-grained representation at a token level. In this paper, we introduce Multi-scale Attention Fusion into transformer (MAFormer), which explores local aggregation and global feature extraction in a dual-stream framework for visual recognition. We develop a simple but effective module to explore the full potential of transformers for visual representation by learning fine-grained and coarse-grained features at a token level and dynamically fusing them. Our Multi-scale Attention Fusion (MAF) block consists of: i) a local window attention branch that learns short-range interactions within windows, aggregating fine-grained local features; ii) global feature extraction through a novel Global Learning with Down-sampling (GLD) operation to efficiently capture long-range context information within the whole image; iii) a fusion module that self-explores the integration of both features via attention. Our MAFormer achieves state-of-the-art performance on common vision tasks. In particular, MAFormer-L achieves 85.9% Top-1 accuracy on ImageNet, surpassing CSWin-B and LV-ViT-L by 1.7% and 0.6% respectively. On MSCOCO, MAFormer outperforms the prior art CSWin by 1.7% mAPs on object detection and 1.4% on instance segmentation with similar-sized parameters, demonstrating the potential to be a general backbone network. 9 authors · Aug 31, 2022
- UniFormer: Unifying Convolution and Self-attention for Visual Recognition It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision transformers (ViTs) have been two dominant frameworks in the past few years. Though CNNs can efficiently decrease local redundancy by convolution within a small neighborhood, the limited receptive field makes it hard to capture global dependency. Alternatively, ViTs can effectively capture long-range dependency via self-attention, while blind similarity comparisons among all the tokens lead to high redundancy. To resolve these problems, we propose a novel Unified transFormer (UniFormer), which can seamlessly integrate the merits of convolution and self-attention in a concise transformer format. Different from the typical transformer blocks, the relation aggregators in our UniFormer block are equipped with local and global token affinity respectively in shallow and deep layers, allowing to tackle both redundancy and dependency for efficient and effective representation learning. Finally, we flexibly stack our UniFormer blocks into a new powerful backbone, and adopt it for various vision tasks from image to video domain, from classification to dense prediction. Without any extra training data, our UniFormer achieves 86.3 top-1 accuracy on ImageNet-1K classification. With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks, e.g., it obtains 82.9/84.8 top-1 accuracy on Kinetics-400/600, 60.9/71.2 top-1 accuracy on Something-Something V1/V2 video classification tasks, 53.8 box AP and 46.4 mask AP on COCO object detection task, 50.8 mIoU on ADE20K semantic segmentation task, and 77.4 AP on COCO pose estimation task. Code is available at https://github.com/Sense-X/UniFormer. 8 authors · Jan 23, 2022
- Wasserstein Dependency Measure for Representation Learning Mutual information maximization has emerged as a powerful learning objective for unsupervised representation learning obtaining state-of-the-art performance in applications such as object recognition, speech recognition, and reinforcement learning. However, such approaches are fundamentally limited since a tight lower bound of mutual information requires sample size exponential in the mutual information. This limits the applicability of these approaches for prediction tasks with high mutual information, such as in video understanding or reinforcement learning. In these settings, such techniques are prone to overfit, both in theory and in practice, and capture only a few of the relevant factors of variation. This leads to incomplete representations that are not optimal for downstream tasks. In this work, we empirically demonstrate that mutual information-based representation learning approaches do fail to learn complete representations on a number of designed and real-world tasks. To mitigate these problems we introduce the Wasserstein dependency measure, which learns more complete representations by using the Wasserstein distance instead of the KL divergence in the mutual information estimator. We show that a practical approximation to this theoretically motivated solution, constructed using Lipschitz constraint techniques from the GAN literature, achieves substantially improved results on tasks where incomplete representations are a major challenge. 6 authors · Mar 27, 2019
1 I3D: Transformer architectures with input-dependent dynamic depth for speech recognition Transformer-based end-to-end speech recognition has achieved great success. However, the large footprint and computational overhead make it difficult to deploy these models in some real-world applications. Model compression techniques can reduce the model size and speed up inference, but the compressed model has a fixed architecture which might be suboptimal. We propose a novel Transformer encoder with Input-Dependent Dynamic Depth (I3D) to achieve strong performance-efficiency trade-offs. With a similar number of layers at inference time, I3D-based models outperform the vanilla Transformer and the static pruned model via iterative layer pruning. We also present interesting analysis on the gate probabilities and the input-dependency, which helps us better understand deep encoders. 3 authors · Mar 14, 2023
- LISTER: Neighbor Decoding for Length-Insensitive Scene Text Recognition The diversity in length constitutes a significant characteristic of text. Due to the long-tail distribution of text lengths, most existing methods for scene text recognition (STR) only work well on short or seen-length text, lacking the capability of recognizing longer text or performing length extrapolation. This is a crucial issue, since the lengths of the text to be recognized are usually not given in advance in real-world applications, but it has not been adequately investigated in previous works. Therefore, we propose in this paper a method called Length-Insensitive Scene TExt Recognizer (LISTER), which remedies the limitation regarding the robustness to various text lengths. Specifically, a Neighbor Decoder is proposed to obtain accurate character attention maps with the assistance of a novel neighbor matrix regardless of the text lengths. Besides, a Feature Enhancement Module is devised to model the long-range dependency with low computation cost, which is able to perform iterations with the neighbor decoder to enhance the feature map progressively. To the best of our knowledge, we are the first to achieve effective length-insensitive scene text recognition. Extensive experiments demonstrate that the proposed LISTER algorithm exhibits obvious superiority on long text recognition and the ability for length extrapolation, while comparing favourably with the previous state-of-the-art methods on standard benchmarks for STR (mainly short text). 5 authors · Aug 24, 2023
- Visual Dependency Transformers: Dependency Tree Emerges from Reversed Attention Humans possess a versatile mechanism for extracting structured representations of our visual world. When looking at an image, we can decompose the scene into entities and their parts as well as obtain the dependencies between them. To mimic such capability, we propose Visual Dependency Transformers (DependencyViT) that can induce visual dependencies without any labels. We achieve that with a novel neural operator called reversed attention that can naturally capture long-range visual dependencies between image patches. Specifically, we formulate it as a dependency graph where a child token in reversed attention is trained to attend to its parent tokens and send information following a normalized probability distribution rather than gathering information in conventional self-attention. With such a design, hierarchies naturally emerge from reversed attention layers, and a dependency tree is progressively induced from leaf nodes to the root node unsupervisedly. DependencyViT offers several appealing benefits. (i) Entities and their parts in an image are represented by different subtrees, enabling part partitioning from dependencies; (ii) Dynamic visual pooling is made possible. The leaf nodes which rarely send messages can be pruned without hindering the model performance, based on which we propose the lightweight DependencyViT-Lite to reduce the computational and memory footprints; (iii) DependencyViT works well on both self- and weakly-supervised pretraining paradigms on ImageNet, and demonstrates its effectiveness on 8 datasets and 5 tasks, such as unsupervised part and saliency segmentation, recognition, and detection. 8 authors · Apr 6, 2023
- Annotating the Tweebank Corpus on Named Entity Recognition and Building NLP Models for Social Media Analysis Social media data such as Twitter messages ("tweets") pose a particular challenge to NLP systems because of their short, noisy, and colloquial nature. Tasks such as Named Entity Recognition (NER) and syntactic parsing require highly domain-matched training data for good performance. To date, there is no complete training corpus for both NER and syntactic analysis (e.g., part of speech tagging, dependency parsing) of tweets. While there are some publicly available annotated NLP datasets of tweets, they are only designed for individual tasks. In this study, we aim to create Tweebank-NER, an English NER corpus based on Tweebank V2 (TB2), train state-of-the-art (SOTA) Tweet NLP models on TB2, and release an NLP pipeline called Twitter-Stanza. We annotate named entities in TB2 using Amazon Mechanical Turk and measure the quality of our annotations. We train the Stanza pipeline on TB2 and compare with alternative NLP frameworks (e.g., FLAIR, spaCy) and transformer-based models. The Stanza tokenizer and lemmatizer achieve SOTA performance on TB2, while the Stanza NER tagger, part-of-speech (POS) tagger, and dependency parser achieve competitive performance against non-transformer models. The transformer-based models establish a strong baseline in Tweebank-NER and achieve the new SOTA performance in POS tagging and dependency parsing on TB2. We release the dataset and make both the Stanza pipeline and BERTweet-based models available "off-the-shelf" for use in future Tweet NLP research. Our source code, data, and pre-trained models are available at: https://github.com/social-machines/TweebankNLP. 4 authors · Jan 18, 2022
13 Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency Recent advancements in Large Vision-Language Models (LVLMs) have significantly enhanced their ability to integrate visual and linguistic information, achieving near-human proficiency in tasks like object recognition, captioning, and visual question answering. However, current benchmarks typically focus on knowledge-centric evaluations that assess domain-specific expertise, often neglecting the core ability to reason about fundamental mathematical elements and visual concepts. We identify a gap in evaluating elementary-level math problems, which rely on explicit visual dependencies-requiring models to discern, integrate, and reason across multiple images while incorporating commonsense knowledge, all of which are crucial for advancing toward broader AGI capabilities. To address this gap, we introduce VCBENCH, a comprehensive benchmark for multimodal mathematical reasoning with explicit visual dependencies. VCBENCH includes 1,720 problems across six cognitive domains, featuring 6,697 images (averaging 3.9 per question) to ensure multi-image reasoning. We evaluate 26 state-of-the-art LVLMs on VCBENCH, revealing substantial performance disparities, with even the top models unable to exceed 50% accuracy. Our findings highlight the ongoing challenges in visual-mathematical integration and suggest avenues for future LVLM advancements. 7 authors · Apr 24, 2025 3
2 HyPoradise: An Open Baseline for Generative Speech Recognition with Large Language Models Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as the output transcription. The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses and corresponding accurate transcriptions across prevalent speech domains. Given this dataset, we examine three types of error correction techniques based on LLMs with varying amounts of labeled hypotheses-transcription pairs, which gains a significant word error rate (WER) reduction. Experimental evidence demonstrates the proposed technique achieves a breakthrough by surpassing the upper bound of traditional re-ranking based methods. More surprisingly, LLM with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list. We make our results publicly accessible for reproducible pipelines with released pre-trained models, thus providing a new evaluation paradigm for ASR error correction with LLMs. 6 authors · Sep 27, 2023
- 3Mformer: Multi-order Multi-mode Transformer for Skeletal Action Recognition Many skeletal action recognition models use GCNs to represent the human body by 3D body joints connected body parts. GCNs aggregate one- or few-hop graph neighbourhoods, and ignore the dependency between not linked body joints. We propose to form hypergraph to model hyper-edges between graph nodes (e.g., third- and fourth-order hyper-edges capture three and four nodes) which help capture higher-order motion patterns of groups of body joints. We split action sequences into temporal blocks, Higher-order Transformer (HoT) produces embeddings of each temporal block based on (i) the body joints, (ii) pairwise links of body joints and (iii) higher-order hyper-edges of skeleton body joints. We combine such HoT embeddings of hyper-edges of orders 1, ..., r by a novel Multi-order Multi-mode Transformer (3Mformer) with two modules whose order can be exchanged to achieve coupled-mode attention on coupled-mode tokens based on 'channel-temporal block', 'order-channel-body joint', 'channel-hyper-edge (any order)' and 'channel-only' pairs. The first module, called Multi-order Pooling (MP), additionally learns weighted aggregation along the hyper-edge mode, whereas the second module, Temporal block Pooling (TP), aggregates along the temporal block mode. Our end-to-end trainable network yields state-of-the-art results compared to GCN-, transformer- and hypergraph-based counterparts. 2 authors · Mar 25, 2023
- COGMEN: COntextualized GNN based Multimodal Emotion recognitioN Emotions are an inherent part of human interactions, and consequently, it is imperative to develop AI systems that understand and recognize human emotions. During a conversation involving various people, a person's emotions are influenced by the other speaker's utterances and their own emotional state over the utterances. In this paper, we propose COntextualized Graph Neural Network based Multimodal Emotion recognitioN (COGMEN) system that leverages local information (i.e., inter/intra dependency between speakers) and global information (context). The proposed model uses Graph Neural Network (GNN) based architecture to model the complex dependencies (local and global information) in a conversation. Our model gives state-of-the-art (SOTA) results on IEMOCAP and MOSEI datasets, and detailed ablation experiments show the importance of modeling information at both levels. 5 authors · May 5, 2022
- CPKD: Clinical Prior Knowledge-Constrained Diffusion Models for Surgical Phase Recognition in Endoscopic Submucosal Dissection Gastrointestinal malignancies constitute a leading cause of cancer-related mortality worldwide, with advanced-stage prognosis remaining particularly dismal. Originating as a groundbreaking technique for early gastric cancer treatment, Endoscopic Submucosal Dissection has evolved into a versatile intervention for diverse gastrointestinal lesions. While computer-assisted systems significantly enhance procedural precision and safety in ESD, their clinical adoption faces a critical bottleneck: reliable surgical phase recognition within complex endoscopic workflows. Current state-of-the-art approaches predominantly rely on multi-stage refinement architectures that iteratively optimize temporal predictions. In this paper, we present Clinical Prior Knowledge-Constrained Diffusion (CPKD), a novel generative framework that reimagines phase recognition through denoising diffusion principles while preserving the core iterative refinement philosophy. This architecture progressively reconstructs phase sequences starting from random noise and conditioned on visual-temporal features. To better capture three domain-specific characteristics, including positional priors, boundary ambiguity, and relation dependency, we design a conditional masking strategy. Furthermore, we incorporate clinical prior knowledge into the model training to improve its ability to correct phase logical errors. Comprehensive evaluations on ESD820, Cholec80, and external multi-center demonstrate that our proposed CPKD achieves superior or comparable performance to state-of-the-art approaches, validating the effectiveness of diffusion-based generative paradigms for surgical phase recognition. 7 authors · Jul 4, 2025
- vGamba: Attentive State Space Bottleneck for efficient Long-range Dependencies in Visual Recognition Capturing long-range dependencies efficiently is essential for visual recognition tasks, yet existing methods face limitations. Convolutional neural networks (CNNs) struggle with restricted receptive fields, while Vision Transformers (ViTs) achieve global context and long-range modeling at a high computational cost. State-space models (SSMs) offer an alternative, but their application in vision remains underexplored. This work introduces vGamba, a hybrid vision backbone that integrates SSMs with attention mechanisms to enhance efficiency and expressiveness. At its core, the Gamba bottleneck block that includes, Gamba Cell, an adaptation of Mamba for 2D spatial structures, alongside a Multi-Head Self-Attention (MHSA) mechanism and a Gated Fusion Module for effective feature representation. The interplay of these components ensures that vGamba leverages the low computational demands of SSMs while maintaining the accuracy of attention mechanisms for modeling long-range dependencies in vision tasks. Additionally, the Fusion module enables seamless interaction between these components. Extensive experiments on classification, detection, and segmentation tasks demonstrate that vGamba achieves a superior trade-off between accuracy and computational efficiency, outperforming several existing models. 2 authors · Mar 27, 2025 1
12 Building Foundations for Natural Language Processing of Historical Turkish: Resources and Models This paper introduces foundational resources and models for natural language processing (NLP) of historical Turkish, a domain that has remained underexplored in computational linguistics. We present the first named entity recognition (NER) dataset, HisTR and the first Universal Dependencies treebank, OTA-BOUN for a historical form of the Turkish language along with transformer-based models trained using these datasets for named entity recognition, dependency parsing, and part-of-speech tagging tasks. Additionally, we introduce Ottoman Text Corpus (OTC), a clean corpus of transliterated historical Turkish texts that spans a wide range of historical periods. Our experimental results show significant improvements in the computational analysis of historical Turkish, achieving promising results in tasks that require understanding of historical linguistic structures. They also highlight existing challenges, such as domain adaptation and language variations across time periods. All of the presented resources and models are made available at https://huggingface.co/bucolin to serve as a benchmark for future progress in historical Turkish NLP. 7 authors · Jan 8, 2025 3
- Augmenty: A Python Library for Structured Text Augmentation Augmnety is a Python library for structured text augmentation. It is built on top of spaCy and allows for augmentation of both the text and its annotations. Augmenty provides a wide range of augmenters which can be combined in a flexible manner to create complex augmentation pipelines. It also includes a set of primitives that can be used to create custom augmenters such as word replacement augmenters. This functionality allows for augmentations within a range of applications such as named entity recognition (NER), part-of-speech tagging, and dependency parsing. 1 authors · Dec 9, 2023
- Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese Multilingual language models such as mBERT have seen impressive cross-lingual transfer to a variety of languages, but many languages remain excluded from these models. In this paper, we analyse the effect of pre-training with monolingual data for a low-resource language that is not included in mBERT -- Maltese -- with a range of pre-training set ups. We conduct evaluations with the newly pre-trained models on three morphosyntactic tasks -- dependency parsing, part-of-speech tagging, and named-entity recognition -- and one semantic classification task -- sentiment analysis. We also present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance. Our results show that using a mixture of pre-training domains is often superior to using Wikipedia text only. We also find that a fraction of this corpus is enough to make significant leaps in performance over Wikipedia-trained models. We pre-train and compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu). The models achieve state-of-the-art performance on these tasks, despite the new corpus being considerably smaller than typically used corpora for high-resourced languages. On average, BERTu outperforms or performs competitively with mBERTu, and the largest gains are observed for higher-level tasks. 5 authors · May 21, 2022
- DaCy: A Unified Framework for Danish NLP Danish natural language processing (NLP) has in recent years obtained considerable improvements with the addition of multiple new datasets and models. However, at present, there is no coherent framework for applying state-of-the-art models for Danish. We present DaCy: a unified framework for Danish NLP built on SpaCy. DaCy uses efficient multitask models which obtain state-of-the-art performance on named entity recognition, part-of-speech tagging, and dependency parsing. DaCy contains tools for easy integration of existing models such as for polarity, emotion, or subjectivity detection. In addition, we conduct a series of tests for biases and robustness of Danish NLP pipelines through augmentation of the test set of DaNE. DaCy large compares favorably and is especially robust to long input lengths and spelling variations and errors. All models except DaCy large display significant biases related to ethnicity while only Polyglot shows a significant gender bias. We argue that for languages with limited benchmark sets, data augmentation can be particularly useful for obtaining more realistic and fine-grained performance estimates. We provide a series of augmenters as a first step towards a more thorough evaluation of language models for low and medium resource languages and encourage further development. 3 authors · Jul 12, 2021
- Bertinho: Galician BERT Representations This paper presents a monolingual BERT model for Galician. We follow the recent trend that shows that it is feasible to build robust monolingual BERT models even for relatively low-resource languages, while performing better than the well-known official multilingual BERT (mBERT). More particularly, we release two monolingual Galician BERT models, built using 6 and 12 transformer layers, respectively; trained with limited resources (~45 million tokens on a single GPU of 24GB). We then provide an exhaustive evaluation on a number of tasks such as POS-tagging, dependency parsing and named entity recognition. For this purpose, all these tasks are cast in a pure sequence labeling setup in order to run BERT without the need to include any additional layers on top of it (we only use an output classification layer to map the contextualized representations into the predicted label). The experiments show that our models, especially the 12-layer one, outperform the results of mBERT in most tasks. 3 authors · Mar 25, 2021
4 CamemBERT: a Tasty French Language Model Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available models have either been trained on English data or on the concatenation of data in multiple languages. This makes practical use of such models --in all languages except English-- very limited. In this paper, we investigate the feasibility of training monolingual Transformer-based language models for other languages, taking French as an example and evaluating our language models on part-of-speech tagging, dependency parsing, named entity recognition and natural language inference tasks. We show that the use of web crawled data is preferable to the use of Wikipedia data. More surprisingly, we show that a relatively small web crawled dataset (4GB) leads to results that are as good as those obtained using larger datasets (130+GB). Our best performing model CamemBERT reaches or improves the state of the art in all four downstream tasks. 8 authors · Nov 10, 2019 1
1 KLUE: Korean Language Understanding Evaluation We introduce Korean Language Understanding Evaluation (KLUE) benchmark. KLUE is a collection of 8 Korean natural language understanding (NLU) tasks, including Topic Classification, SemanticTextual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking. We build all of the tasks from scratch from diverse source corpora while respecting copyrights, to ensure accessibility for anyone without any restrictions. With ethical considerations in mind, we carefully design annotation protocols. Along with the benchmark tasks and data, we provide suitable evaluation metrics and fine-tuning recipes for pretrained language models for each task. We furthermore release the pretrained language models (PLM), KLUE-BERT and KLUE-RoBERTa, to help reproducing baseline models on KLUE and thereby facilitate future research. We make a few interesting observations from the preliminary experiments using the proposed KLUE benchmark suite, already demonstrating the usefulness of this new benchmark suite. First, we find KLUE-RoBERTa-large outperforms other baselines, including multilingual PLMs and existing open-source Korean PLMs. Second, we see minimal degradation in performance even when we replace personally identifiable information from the pretraining corpus, suggesting that privacy and NLU capability are not at odds with each other. Lastly, we find that using BPE tokenization in combination with morpheme-level pre-tokenization is effective in tasks involving morpheme-level tagging, detection and generation. In addition to accelerating Korean NLP research, our comprehensive documentation on creating KLUE will facilitate creating similar resources for other languages in the future. KLUE is available at https://klue-benchmark.com. 31 authors · May 20, 2021
1 PhoBERT: Pre-trained language models for Vietnamese We present PhoBERT with two versions, PhoBERT-base and PhoBERT-large, the first public large-scale monolingual language models pre-trained for Vietnamese. Experimental results show that PhoBERT consistently outperforms the recent best pre-trained multilingual model XLM-R (Conneau et al., 2020) and improves the state-of-the-art in multiple Vietnamese-specific NLP tasks including Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference. We release PhoBERT to facilitate future research and downstream applications for Vietnamese NLP. Our PhoBERT models are available at https://github.com/VinAIResearch/PhoBERT 2 authors · Mar 2, 2020
- GR-NLP-TOOLKIT: An Open-Source NLP Toolkit for Modern Greek We present GR-NLP-TOOLKIT, an open-source natural language processing (NLP) toolkit developed specifically for modern Greek. The toolkit provides state-of-the-art performance in five core NLP tasks, namely part-of-speech tagging, morphological tagging, dependency parsing, named entity recognition, and Greeklishto-Greek transliteration. The toolkit is based on pre-trained Transformers, it is freely available, and can be easily installed in Python (pip install gr-nlp-toolkit). It is also accessible through a demonstration platform on HuggingFace, along with a publicly available API for non-commercial use. We discuss the functionality provided for each task, the underlying methods, experiments against comparable open-source toolkits, and future possible enhancements. The toolkit is available at: https://github.com/nlpaueb/gr-nlp-toolkit 11 authors · Dec 11, 2024
- calamanCy: A Tagalog Natural Language Processing Toolkit We introduce calamanCy, an open-source toolkit for constructing natural language processing (NLP) pipelines for Tagalog. It is built on top of spaCy, enabling easy experimentation and integration with other frameworks. calamanCy addresses the development gap by providing a consistent API for building NLP applications and offering general-purpose multitask models with out-of-the-box support for dependency parsing, parts-of-speech (POS) tagging, and named entity recognition (NER). calamanCy aims to accelerate the progress of Tagalog NLP by consolidating disjointed resources in a unified framework. The calamanCy toolkit is available on GitHub: https://github.com/ljvmiranda921/calamanCy. 1 authors · Nov 13, 2023
- N-LTP: An Open-source Neural Language Technology Platform for Chinese We introduce N-LTP, an open-source neural language technology platform supporting six fundamental Chinese NLP tasks: {lexical analysis} (Chinese word segmentation, part-of-speech tagging, and named entity recognition), {syntactic parsing} (dependency parsing), and {semantic parsing} (semantic dependency parsing and semantic role labeling). Unlike the existing state-of-the-art toolkits, such as Stanza, that adopt an independent model for each task, N-LTP adopts the multi-task framework by using a shared pre-trained model, which has the advantage of capturing the shared knowledge across relevant Chinese tasks. In addition, a knowledge distillation method DBLP:journals/corr/abs-1907-04829 where the single-task model teaches the multi-task model is further introduced to encourage the multi-task model to surpass its single-task teacher. Finally, we provide a collection of easy-to-use APIs and a visualization tool to make users to use and view the processing results more easily and directly. To the best of our knowledge, this is the first toolkit to support six Chinese NLP fundamental tasks. Source code, documentation, and pre-trained models are available at https://github.com/HIT-SCIR/ltp. 4 authors · Sep 24, 2020
- Multilingual is not enough: BERT for Finnish Deep learning-based language models pretrained on large unannotated text corpora have been demonstrated to allow efficient transfer learning for natural language processing, with recent approaches such as the transformer-based BERT model advancing the state of the art across a variety of tasks. While most work on these models has focused on high-resource languages, in particular English, a number of recent efforts have introduced multilingual models that can be fine-tuned to address tasks in a large number of different languages. However, we still lack a thorough understanding of the capabilities of these models, in particular for lower-resourced languages. In this paper, we focus on Finnish and thoroughly evaluate the multilingual BERT model on a range of tasks, comparing it with a new Finnish BERT model trained from scratch. The new language-specific model is shown to systematically and clearly outperform the multilingual. While the multilingual model largely fails to reach the performance of previously proposed methods, the custom Finnish BERT model establishes new state-of-the-art results on all corpora for all reference tasks: part-of-speech tagging, named entity recognition, and dependency parsing. We release the model and all related resources created for this study with open licenses at https://turkunlp.org/finbert . 8 authors · Dec 15, 2019
- Advancing Hungarian Text Processing with HuSpaCy: Efficient and Accurate NLP Pipelines This paper presents a set of industrial-grade text processing models for Hungarian that achieve near state-of-the-art performance while balancing resource efficiency and accuracy. Models have been implemented in the spaCy framework, extending the HuSpaCy toolkit with several improvements to its architecture. Compared to existing NLP tools for Hungarian, all of our pipelines feature all basic text processing steps including tokenization, sentence-boundary detection, part-of-speech tagging, morphological feature tagging, lemmatization, dependency parsing and named entity recognition with high accuracy and throughput. We thoroughly evaluated the proposed enhancements, compared the pipelines with state-of-the-art tools and demonstrated the competitive performance of the new models in all text preprocessing steps. All experiments are reproducible and the pipelines are freely available under a permissive license. 5 authors · Aug 24, 2023
- Stanza: A Python Natural Language Processing Toolkit for Many Human Languages We introduce Stanza, an open-source Python natural language processing toolkit supporting 66 human languages. Compared to existing widely used toolkits, Stanza features a language-agnostic fully neural pipeline for text analysis, including tokenization, multi-word token expansion, lemmatization, part-of-speech and morphological feature tagging, dependency parsing, and named entity recognition. We have trained Stanza on a total of 112 datasets, including the Universal Dependencies treebanks and other multilingual corpora, and show that the same neural architecture generalizes well and achieves competitive performance on all languages tested. Additionally, Stanza includes a native Python interface to the widely used Java Stanford CoreNLP software, which further extends its functionality to cover other tasks such as coreference resolution and relation extraction. Source code, documentation, and pretrained models for 66 languages are available at https://stanfordnlp.github.io/stanza. 5 authors · Mar 16, 2020
- Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection Universal Dependencies is an open community effort to create cross-linguistically consistent treebank annotation for many languages within a dependency-based lexicalist framework. The annotation consists in a linguistically motivated word segmentation; a morphological layer comprising lemmas, universal part-of-speech tags, and standardized morphological features; and a syntactic layer focusing on syntactic relations between predicates, arguments and modifiers. In this paper, we describe version 2 of the guidelines (UD v2), discuss the major changes from UD v1 to UD v2, and give an overview of the currently available treebanks for 90 languages. 9 authors · Apr 22, 2020
- Linguistic Structure Induction from Language Models Linear sequences of words are implicitly represented in our brains by hierarchical structures that organize the composition of words in sentences. Linguists formalize different frameworks to model this hierarchy; two of the most common syntactic frameworks are Constituency and Dependency. Constituency represents sentences as nested groups of phrases, while dependency represents a sentence by assigning relations between its words. Recently, the pursuit of intelligent machines has produced Language Models (LMs) capable of solving many language tasks with a human-level performance. Many studies now question whether LMs implicitly represent syntactic hierarchies. This thesis focuses on producing constituency and dependency structures from LMs in an unsupervised setting. I review the critical methods in this field and highlight a line of work that utilizes a numerical representation for binary constituency trees (Syntactic Distance). I present a detailed study on StructFormer (SF) (Shen et al., 2021), which retrofits a transformer encoder architecture with a parser network to produce constituency and dependency structures. I present six experiments to analyze and address this field's challenges; experiments include investigating the effect of repositioning the parser network within the SF architecture, evaluating subword-based induced trees, and benchmarking the models developed in the thesis experiments on linguistic tasks. Models benchmarking is performed by participating in the BabyLM challenge, published at CoNLL 2023 (Momen et al., 2023). The results of this thesis encourage further development in the direction of retrofitting transformer-based models to induce syntactic structures, supported by the acceptable performance of SF in different experimental settings and the observed limitations that require innovative solutions to advance the state of syntactic structure induction. 1 authors · Mar 11, 2024
1 Assessment of Pre-Trained Models Across Languages and Grammars We present an approach for assessing how multilingual large language models (LLMs) learn syntax in terms of multi-formalism syntactic structures. We aim to recover constituent and dependency structures by casting parsing as sequence labeling. To do so, we select a few LLMs and study them on 13 diverse UD treebanks for dependency parsing and 10 treebanks for constituent parsing. Our results show that: (i) the framework is consistent across encodings, (ii) pre-trained word vectors do not favor constituency representations of syntax over dependencies, (iii) sub-word tokenization is needed to represent syntax, in contrast to character-based models, and (iv) occurrence of a language in the pretraining data is more important than the amount of task data when recovering syntax from the word vectors. 3 authors · Sep 20, 2023
- StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling There are two major classes of natural language grammar -- the dependency grammar that models one-to-one correspondences between words and the constituency grammar that models the assembly of one or several corresponded words. While previous unsupervised parsing methods mostly focus on only inducing one class of grammars, we introduce a novel model, StructFormer, that can simultaneously induce dependency and constituency structure. To achieve this, we propose a new parsing framework that can jointly generate a constituency tree and dependency graph. Then we integrate the induced dependency relations into the transformer, in a differentiable manner, through a novel dependency-constrained self-attention mechanism. Experimental results show that our model can achieve strong results on unsupervised constituency parsing, unsupervised dependency parsing, and masked language modeling at the same time. 6 authors · Dec 1, 2020
- A Little Pretraining Goes a Long Way: A Case Study on Dependency Parsing Task for Low-resource Morphologically Rich Languages Neural dependency parsing has achieved remarkable performance for many domains and languages. The bottleneck of massive labeled data limits the effectiveness of these approaches for low resource languages. In this work, we focus on dependency parsing for morphological rich languages (MRLs) in a low-resource setting. Although morphological information is essential for the dependency parsing task, the morphological disambiguation and lack of powerful analyzers pose challenges to get this information for MRLs. To address these challenges, we propose simple auxiliary tasks for pretraining. We perform experiments on 10 MRLs in low-resource settings to measure the efficacy of our proposed pretraining method and observe an average absolute gain of 2 points (UAS) and 3.6 points (LAS). Code and data available at: https://github.com/jivnesh/LCM 5 authors · Feb 12, 2021
- Deep Biaffine Attention for Neural Dependency Parsing This paper builds off recent work from Kiperwasser & Goldberg (2016) using neural attention in a simple graph-based dependency parser. We use a larger but more thoroughly regularized parser than other recent BiLSTM-based approaches, with biaffine classifiers to predict arcs and labels. Our parser gets state of the art or near state of the art performance on standard treebanks for six different languages, achieving 95.7% UAS and 94.1% LAS on the most popular English PTB dataset. This makes it the highest-performing graph-based parser on this benchmark---outperforming Kiperwasser Goldberg (2016) by 1.8% and 2.2%---and comparable to the highest performing transition-based parser (Kuncoro et al., 2016), which achieves 95.8% UAS and 94.6% LAS. We also show which hyperparameter choices had a significant effect on parsing accuracy, allowing us to achieve large gains over other graph-based approaches. 2 authors · Nov 6, 2016
- Linguistic Dependencies and Statistical Dependence Are pairs of words that tend to occur together also likely to stand in a linguistic dependency? This empirical question is motivated by a long history of literature in cognitive science, psycholinguistics, and NLP. In this work we contribute an extensive analysis of the relationship between linguistic dependencies and statistical dependence between words. Improving on previous work, we introduce the use of large pretrained language models to compute contextualized estimates of the pointwise mutual information between words (CPMI). For multiple models and languages, we extract dependency trees which maximize CPMI, and compare to gold standard linguistic dependencies. Overall, we find that CPMI dependencies achieve an unlabelled undirected attachment score of at most approx 0.5. While far above chance, and consistently above a non-contextualized PMI baseline, this score is generally comparable to a simple baseline formed by connecting adjacent words. We analyze which kinds of linguistic dependencies are best captured in CPMI dependencies, and also find marked differences between the estimates of the large pretrained language models, illustrating how their different training schemes affect the type of dependencies they capture. 4 authors · Apr 17, 2021
- Bi-directional Attention with Agreement for Dependency Parsing We develop a novel bi-directional attention model for dependency parsing, which learns to agree on headword predictions from the forward and backward parsing directions. The parsing procedure for each direction is formulated as sequentially querying the memory component that stores continuous headword embeddings. The proposed parser makes use of {\it soft} headword embeddings, allowing the model to implicitly capture high-order parsing history without dramatically increasing the computational complexity. We conduct experiments on English, Chinese, and 12 other languages from the CoNLL 2006 shared task, showing that the proposed model achieves state-of-the-art unlabeled attachment scores on 6 languages. 5 authors · Aug 6, 2016
- Thai Universal Dependency Treebank Automatic dependency parsing of Thai sentences has been underexplored, as evidenced by the lack of large Thai dependency treebanks with complete dependency structures and the lack of a published systematic evaluation of state-of-the-art models, especially transformer-based parsers. In this work, we address these problems by introducing Thai Universal Dependency Treebank (TUD), a new largest Thai treebank consisting of 3,627 trees annotated in accordance with the Universal Dependencies (UD) framework. We then benchmark dependency parsing models that incorporate pretrained transformers as encoders and train them on Thai-PUD and our TUD. The evaluation results show that most of our models can outperform other models reported in previous papers and provide insight into the optimal choices of components to include in Thai dependency parsers. The new treebank and every model's full prediction generated in our experiment are made available on a GitHub repository for further study. 7 authors · May 13, 2024
- Dependency-based Hybrid Trees for Semantic Parsing We propose a novel dependency-based hybrid tree model for semantic parsing, which converts natural language utterance into machine interpretable meaning representations. Unlike previous state-of-the-art models, the semantic information is interpreted as the latent dependency between the natural language words in our joint representation. Such dependency information can capture the interactions between the semantics and natural language words. We integrate a neural component into our model and propose an efficient dynamic-programming algorithm to perform tractable inference. Through extensive experiments on the standard multilingual GeoQuery dataset with eight languages, we demonstrate that our proposed approach is able to achieve state-of-the-art performance across several languages. Analysis also justifies the effectiveness of using our new dependency-based representation. 2 authors · Aug 31, 2018
- Yara Parser: A Fast and Accurate Dependency Parser Dependency parsers are among the most crucial tools in natural language processing as they have many important applications in downstream tasks such as information retrieval, machine translation and knowledge acquisition. We introduce the Yara Parser, a fast and accurate open-source dependency parser based on the arc-eager algorithm and beam search. It achieves an unlabeled accuracy of 93.32 on the standard WSJ test set which ranks it among the top dependency parsers. At its fastest, Yara can parse about 4000 sentences per second when in greedy mode (1 beam). When optimizing for accuracy (using 64 beams and Brown cluster features), Yara can parse 45 sentences per second. The parser can be trained on any syntactic dependency treebank and different options are provided in order to make it more flexible and tunable for specific tasks. It is released with the Apache version 2.0 license and can be used for both commercial and academic purposes. The parser can be found at https://github.com/yahoo/YaraParser. 2 authors · Mar 23, 2015
- Neural Semantic Role Labeling with Dependency Path Embeddings This paper introduces a novel model for semantic role labeling that makes use of neural sequence modeling techniques. Our approach is motivated by the observation that complex syntactic structures and related phenomena, such as nested subordinations and nominal predicates, are not handled well by existing models. Our model treats such instances as sub-sequences of lexicalized dependency paths and learns suitable embedding representations. We experimentally demonstrate that such embeddings can improve results over previous state-of-the-art semantic role labelers, and showcase qualitative improvements obtained by our method. 2 authors · May 24, 2016
1 A Joint Model for Definition Extraction with Syntactic Connection and Semantic Consistency Definition Extraction (DE) is one of the well-known topics in Information Extraction that aims to identify terms and their corresponding definitions in unstructured texts. This task can be formalized either as a sentence classification task (i.e., containing term-definition pairs or not) or a sequential labeling task (i.e., identifying the boundaries of the terms and definitions). The previous works for DE have only focused on one of the two approaches, failing to model the inter-dependencies between the two tasks. In this work, we propose a novel model for DE that simultaneously performs the two tasks in a single framework to benefit from their inter-dependencies. Our model features deep learning architectures to exploit the global structures of the input sentences as well as the semantic consistencies between the terms and the definitions, thereby improving the quality of the representation vectors for DE. Besides the joint inference between sentence classification and sequential labeling, the proposed model is fundamentally different from the prior work for DE in that the prior work has only employed the local structures of the input sentences (i.e., word-to-word relations), and not yet considered the semantic consistencies between terms and definitions. In order to implement these novel ideas, our model presents a multi-task learning framework that employs graph convolutional neural networks and predicts the dependency paths between the terms and the definitions. We also seek to enforce the consistency between the representations of the terms and definitions both globally (i.e., increasing semantic consistency between the representations of the entire sentences and the terms/definitions) and locally (i.e., promoting the similarity between the representations of the terms and the definitions). 4 authors · Nov 5, 2019
- Fine-tuning a Subtle Parsing Distinction Using a Probabilistic Decision Tree: the Case of Postnominal "that" in Noun Complement Clauses vs. Relative Clauses In this paper we investigated two different methods to parse relative and noun complement clauses in English and resorted to distinct tags for their corresponding that as a relative pronoun and as a complementizer. We used an algorithm to relabel a corpus parsed with the GUM Treebank using Universal Dependency. Our second experiment consisted in using TreeTagger, a Probabilistic Decision Tree, to learn the distinction between the two complement and relative uses of postnominal "that". We investigated the effect of the training set size on TreeTagger accuracy and how representative the GUM Treebank files are for the two structures under scrutiny. We discussed some of the linguistic and structural tenets of the learnability of this distinction. 2 authors · Dec 5, 2022
1 Rethinking Self-Attention: Towards Interpretability in Neural Parsing Attention mechanisms have improved the performance of NLP tasks while allowing models to remain explainable. Self-attention is currently widely used, however interpretability is difficult due to the numerous attention distributions. Recent work has shown that model representations can benefit from label-specific information, while facilitating interpretation of predictions. We introduce the Label Attention Layer: a new form of self-attention where attention heads represent labels. We test our novel layer by running constituency and dependency parsing experiments and show our new model obtains new state-of-the-art results for both tasks on both the Penn Treebank (PTB) and Chinese Treebank. Additionally, our model requires fewer self-attention layers compared to existing work. Finally, we find that the Label Attention heads learn relations between syntactic categories and show pathways to analyze errors. 6 authors · Nov 10, 2019
- ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 We present the winning entry to the Multilingual Lexical Normalization (MultiLexNorm) shared task at W-NUT 2021 (van der Goot et al., 2021a), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. We base our solution on a pre-trained byte-level language model, ByT5 (Xue et al., 2021a), which we further pre-train on synthetic data and then fine-tune on authentic normalization data. Our system achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. The source code is released at https://github.com/ufal/multilexnorm2021 and the fine-tuned models at https://huggingface.co/ufal. 2 authors · Oct 28, 2021
- Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations We present a simple and effective scheme for dependency parsing which is based on bidirectional-LSTMs (BiLSTMs). Each sentence token is associated with a BiLSTM vector representing the token in its sentential context, and feature vectors are constructed by concatenating a few BiLSTM vectors. The BiLSTM is trained jointly with the parser objective, resulting in very effective feature extractors for parsing. We demonstrate the effectiveness of the approach by applying it to a greedy transition-based parser as well as to a globally optimized graph-based parser. The resulting parsers have very simple architectures, and match or surpass the state-of-the-art accuracies on English and Chinese. 2 authors · Mar 14, 2016
- SpaDeLeF: A Dataset for Hierarchical Classification of Lexical Functions for Collocations in Spanish In natural language processing (NLP), lexical function is a concept to unambiguously represent semantic and syntactic features of words and phrases in text first crafted in the Meaning-Text Theory. Hierarchical classification of lexical functions involves organizing these features into a tree-like hierarchy of categories or labels. This is a challenging task as it requires a good understanding of the context and the relationships among words and phrases in text. It also needs large amounts of labeled data to train language models effectively. In this paper, we present a dataset of most frequent Spanish verb-noun collocations and sentences where they occur, each collocation is assigned to one of 37 lexical functions defined as classes for a hierarchical classification task. Each class represents a relation between the noun and the verb in a collocation involving their semantic and syntactic features. We combine the classes in a tree-based structure, and introduce classification objectives for each level of the structure. The dataset was created by dependency tree parsing and matching of the phrases in Spanish news. We provide baselines and data splits for each objective. 3 authors · Nov 7, 2023
- To Know by the Company Words Keep and What Else Lies in the Vicinity The development of state-of-the-art (SOTA) Natural Language Processing (NLP) systems has steadily been establishing new techniques to absorb the statistics of linguistic data. These techniques often trace well-known constructs from traditional theories, and we study these connections to close gaps around key NLP methods as a means to orient future work. For this, we introduce an analytic model of the statistics learned by seminal algorithms (including GloVe and Word2Vec), and derive insights for systems that use these algorithms and the statistics of co-occurrence, in general. In this work, we derive -- to the best of our knowledge -- the first known solution to Word2Vec's softmax-optimized, skip-gram algorithm. This result presents exciting potential for future development as a direct solution to a deep learning (DL) language model's (LM's) matrix factorization. However, we use the solution to demonstrate a seemingly-universal existence of a property that word vectors exhibit and which allows for the prophylactic discernment of biases in data -- prior to their absorption by DL models. To qualify our work, we conduct an analysis of independence, i.e., on the density of statistical dependencies in co-occurrence models, which in turn renders insights on the distributional hypothesis' partial fulfillment by co-occurrence statistics. 2 authors · Apr 29, 2022
- Not All Features Deserve Attention: Graph-Guided Dependency Learning for Tabular Data Generation with Language Models Large Language Models (LLMs) have shown strong potential for tabular data generation by modeling textualized feature-value pairs. However, tabular data inherently exhibits sparse feature-level dependencies, where many feature interactions are structurally insignificant. This creates a fundamental mismatch as LLMs' self-attention mechanism inevitably distributes focus across all pairs, diluting attention on critical relationships, particularly in datasets with complex dependencies or semantically ambiguous features. To address this limitation, we propose GraDe (Graph-Guided Dependency Learning), a novel method that explicitly integrates sparse dependency graphs into LLMs' attention mechanism. GraDe employs a lightweight dynamic graph learning module guided by externally extracted functional dependencies, prioritizing key feature interactions while suppressing irrelevant ones. Our experiments across diverse real-world datasets demonstrate that GraDe outperforms existing LLM-based approaches by up to 12% on complex datasets while achieving competitive results with state-of-the-art approaches in synthetic data quality. Our method is minimally intrusive yet effective, offering a practical solution for structure-aware tabular data modeling with LLMs. 4 authors · Jul 24, 2025
1 Semi-Supervised Neural System for Tagging, Parsing and Lematization This paper describes the ICS PAS system which took part in CoNLL 2018 shared task on Multilingual Parsing from Raw Text to Universal Dependencies. The system consists of jointly trained tagger, lemmatizer, and dependency parser which are based on features extracted by a biLSTM network. The system uses both fully connected and dilated convolutional neural architectures. The novelty of our approach is the use of an additional loss function, which reduces the number of cycles in the predicted dependency graphs, and the use of self-training to increase the system performance. The proposed system, i.e. ICS PAS (Warszawa), ranked 3th/4th in the official evaluation obtaining the following overall results: 73.02 (LAS), 60.25 (MLAS) and 64.44 (BLEX). 2 authors · Apr 26, 2020
- Cross-lingual Transfer Learning for Javanese Dependency Parsing While structure learning achieves remarkable performance in high-resource languages, the situation differs for under-represented languages due to the scarcity of annotated data. This study focuses on assessing the efficacy of transfer learning in enhancing dependency parsing for Javanese, a language spoken by 80 million individuals but characterized by limited representation in natural language processing. We utilized the Universal Dependencies dataset consisting of dependency treebanks from more than 100 languages, including Javanese. We propose two learning strategies to train the model: transfer learning (TL) and hierarchical transfer learning (HTL). While TL only uses a source language to pre-train the model, the HTL method uses a source language and an intermediate language in the learning process. The results show that our best model uses the HTL method, which improves performance with an increase of 10% for both UAS and LAS evaluations compared to the baseline model. 3 authors · Jan 22, 2024
- MINERVA: Mutual Information Neural Estimation for Supervised Feature Selection Existing feature filters rely on statistical pair-wise dependence metrics to model feature-target relationships, but this approach may fail when the target depends on higher-order feature interactions rather than individual contributions. We introduce Mutual Information Neural Estimation Regularized Vetting Algorithm (MINERVA), a novel approach to supervised feature selection based on neural estimation of mutual information between features and targets. We paramaterize the approximation of mutual information with neural networks and perform feature selection using a carefully designed loss function augmented with sparsity-inducing regularizers. Our method is implemented in a two-stage process to decouple representation learning from feature selection, ensuring better generalization and a more accurate expression of feature importance. We present examples of ubiquitous dependency structures that are rarely captured in literature and show that our proposed method effectively captures these complex feature-target relationships by evaluating feature subsets as an ensemble. Experimental results on synthetic and real-life fraud datasets demonstrate the efficacy of our method and its ability to perform exact solutions. 4 authors · Oct 2, 2025
- BeLLM: Backward Dependency Enhanced Large Language Model for Sentence Embeddings Sentence embeddings are crucial in measuring semantic similarity. Most recent studies employed large language models (LLMs) to learn sentence embeddings. Existing LLMs mainly adopted autoregressive architecture without explicit backward dependency modeling. Therefore, we examined the effects of backward dependencies in LLMs for semantic similarity measurements. Concretely, we propose a novel model: backward dependency enhanced large language model (BeLLM). It learns sentence embeddings via transforming specific attention layers from uni- to bi-directional. We extensively experiment across various semantic textual similarity (STS) tasks and downstream applications. BeLLM achieves state-of-the-art performance in varying scenarios. It shows that auto-regressive LLMs benefit from backward dependencies for sentence embeddings. 2 authors · Nov 9, 2023
- Beyond IID: Optimizing Instruction Learning from the Perspective of Instruction Interaction and Dependency With the availability of various instruction datasets, a pivotal challenge is how to effectively select and integrate these instructions to fine-tune large language models (LLMs). Previous research mainly focuses on selecting individual high-quality instructions. However, these works overlooked the joint interactions and dependencies between different categories of instructions, leading to suboptimal selection strategies. Moreover, the nature of these interaction patterns remains largely unexplored, let alone optimize the instruction set with regard to them. To fill these gaps, in this paper, we: (1) systemically investigate interaction and dependency patterns between different categories of instructions, (2) manage to optimize the instruction set concerning the interaction patterns using a linear programming-based method, and optimize the learning schema of SFT using an instruction dependency taxonomy guided curriculum learning. Experimental results across different LLMs demonstrate improved performance over strong baselines on widely adopted benchmarks. 5 authors · Sep 11, 2024
- How Graph Structure and Label Dependencies Contribute to Node Classification in a Large Network of Documents We introduce a new dataset named WikiVitals which contains a large graph of 48k mutually referred Wikipedia articles classified into 32 categories and connected by 2.3M edges. Our aim is to rigorously evaluate the contributions of three distinct sources of information to the label prediction in a semi-supervised node classification setting, namely the content of the articles, their connections with each other and the correlations among their labels. We perform this evaluation using a Graph Markov Neural Network which provides a theoretically principled model for this task and we conduct a detailed evaluation of the contributions of each sources of information using a clear separation of model selection and model assessment. One interesting observation is that including the effect of label dependencies is more relevant for sparse train sets than it is for dense train sets. 2 authors · Apr 3, 2023
5 Grammar-Constrained Decoding for Structured NLP Tasks without Finetuning Despite their impressive performance, large language models (LMs) still struggle with reliably generating complex output structures when not finetuned to follow the required output format exactly. To address this issue, grammar-constrained decoding (GCD) can be used to control the generation of LMs, guaranteeing that the output follows a given structure. Most existing GCD methods are, however, limited to specific tasks, such as parsing or code generation. In this work, we demonstrate that formal grammars can describe the output space for a much wider range of tasks and argue that GCD can serve as a unified framework for structured NLP tasks in general. For increased flexibility, we introduce input-dependent grammars, which allow the grammar to depend on the input and thus enable the generation of different output structures for different inputs. We then empirically demonstrate the power and flexibility of GCD-enhanced LMs on (1) information extraction, (2) entity disambiguation, and (3) constituency parsing. Our results indicate that grammar-constrained LMs substantially outperform unconstrained LMs or even beat task-specific finetuned models. Grammar constraints thus hold great promise for harnessing off-the-shelf LMs for a wide range of structured NLP tasks, especially where training data is scarce or finetuning is expensive. Code and data: https://github.com/epfl-dlab/GCD. 4 authors · May 23, 2023
1 Non-Euclidean Hierarchical Representational Learning using Hyperbolic Graph Neural Networks for Environmental Claim Detection Transformer-based models dominate NLP tasks like sentiment analysis, machine translation, and claim verification. However, their massive computational demands and lack of interpretability pose challenges for real-world applications requiring efficiency and transparency. In this work, we explore Graph Neural Networks (GNNs) and Hyperbolic Graph Neural Networks (HGNNs) as lightweight yet effective alternatives for Environmental Claim Detection, reframing it as a graph classification problem. We construct dependency parsing graphs to explicitly model syntactic structures, using simple word embeddings (word2vec) for node features with dependency relations encoded as edge features. Our results demonstrate that these graph-based models achieve comparable or superior performance to state-of-the-art transformers while using 30x fewer parameters. This efficiency highlights the potential of structured, interpretable, and computationally efficient graph-based approaches. 2 authors · Feb 19, 2025
- Multi-Label Text Classification using Attention-based Graph Neural Network In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models. 3 authors · Mar 22, 2020
2 Long Context is Not Long at All: A Prospector of Long-Dependency Data for Large Language Models Long-context modeling capabilities are important for large language models (LLMs) in various applications. However, directly training LLMs with long context windows is insufficient to enhance this capability since some training samples do not exhibit strong semantic dependencies across long contexts. In this study, we propose a data mining framework ProLong that can assign each training sample with a long dependency score, which can be used to rank and filter samples that are more advantageous for enhancing long-context modeling abilities in LLM training. Specifically, we first use delta perplexity scores to measure the Dependency Strength between text segments in a given document. Then we refine this metric based on the Dependency Distance of these segments to incorporate spatial relationships across long-contexts. Final results are calibrated with a Dependency Specificity metric to prevent trivial dependencies introduced by repetitive patterns. Moreover, a random sampling approach is proposed to optimize the computational efficiency of ProLong. Comprehensive experiments on multiple benchmarks indicate that ProLong effectively identifies documents that carry long dependencies and LLMs trained on these documents exhibit significantly enhanced long-context modeling capabilities. 6 authors · May 28, 2024 1
- Relation Classification via Recurrent Neural Network Deep learning has gained much success in sentence-level relation classification. For example, convolutional neural networks (CNN) have delivered competitive performance without much effort on feature engineering as the conventional pattern-based methods. Thus a lot of works have been produced based on CNN structures. However, a key issue that has not been well addressed by the CNN-based method is the lack of capability to learn temporal features, especially long-distance dependency between nominal pairs. In this paper, we propose a simple framework based on recurrent neural networks (RNN) and compare it with CNN-based model. To show the limitation of popular used SemEval-2010 Task 8 dataset, we introduce another dataset refined from MIMLRE(Angeli et al., 2014). Experiments on two different datasets strongly indicates that the RNN-based model can deliver better performance on relation classification, and it is particularly capable of learning long-distance relation patterns. This makes it suitable for real-world applications where complicated expressions are often involved. 2 authors · Aug 5, 2015
- NorNE: Annotating Named Entities for Norwegian This paper presents NorNE, a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokm{\aa}l and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons, organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names. We here present details on the annotation effort, guidelines, inter-annotator agreement and an experimental analysis of the corpus using a neural sequence labeling architecture. 5 authors · Nov 27, 2019
- Dependency-Aware Semi-Structured Sparsity of GLU Variants in Large Language Models The rapid advancement in Large Language Models (LLMs) has markedly enhanced the capabilities of language understanding and generation. However, the substantial model size poses hardware challenges, affecting both memory size for serving and inference latency for token generation. To address those challenges, we propose Dependency-aware Semi-structured Sparsity (DaSS), a novel method for the recent prevalent SwiGLU-based LLMs pruning. Our approach incorporates structural dependency into the weight magnitude-based unstructured pruning. We introduce an MLP-specific pruning metric that evaluates the importance of each weight by jointly considering its magnitude and its corresponding MLP intermediate activation norms. DaSS facilitates a balance between the adaptability offered by unstructured pruning and the structural consistency inherent in dependency-based structured pruning. Empirical evaluations on Mistral and LLaMA2 model families demonstrate that DaSS not only outperforms both SparseGPT and Wanda in achieving hardware-friendly N:M sparsity patterns but also maintains the computational efficiency of Wanda. 3 authors · May 3, 2024
- The UD-NewsCrawl Treebank: Reflections and Challenges from a Large-scale Tagalog Syntactic Annotation Project This paper presents UD-NewsCrawl, the largest Tagalog treebank to date, containing 15.6k trees manually annotated according to the Universal Dependencies framework. We detail our treebank development process, including data collection, pre-processing, manual annotation, and quality assurance procedures. We provide baseline evaluations using multiple transformer-based models to assess the performance of state-of-the-art dependency parsers on Tagalog. We also highlight challenges in the syntactic analysis of Tagalog given its distinctive grammatical properties, and discuss its implications for the annotation of this treebank. We anticipate that UD-NewsCrawl and our baseline model implementations will serve as valuable resources for advancing computational linguistics research in underrepresented languages like Tagalog. 3 authors · May 26, 2025
4 Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch. 6 authors · Jan 9, 2019
- Selection Bias Induced Spurious Correlations in Large Language Models In this work we show how large language models (LLMs) can learn statistical dependencies between otherwise unconditionally independent variables due to dataset selection bias. To demonstrate the effect, we developed a masked gender task that can be applied to BERT-family models to reveal spurious correlations between predicted gender pronouns and a variety of seemingly gender-neutral variables like date and location, on pre-trained (unmodified) BERT and RoBERTa large models. Finally, we provide an online demo, inviting readers to experiment further. 1 authors · Jul 18, 2022
7 Selecting Influential Samples for Long Context Alignment via Homologous Models' Guidance and Contextual Awareness Measurement The expansion of large language models to effectively handle instructions with extremely long contexts has yet to be fully investigated. The primary obstacle lies in constructing a high-quality long instruction-following dataset devised for long context alignment. Existing studies have attempted to scale up the available data volume by synthesizing long instruction-following samples. However, indiscriminately increasing the quantity of data without a well-defined strategy for ensuring data quality may introduce low-quality samples and restrict the final performance. To bridge this gap, we aim to address the unique challenge of long-context alignment, i.e., modeling the long-range dependencies for handling instructions and lengthy input contexts. We propose GATEAU, a novel framework designed to identify the influential and high-quality samples enriched with long-range dependency relations by utilizing crafted Homologous Models' Guidance (HMG) and Contextual Awareness Measurement (CAM). Specifically, HMG attempts to measure the difficulty of generating corresponding responses due to the long-range dependencies, using the perplexity scores of the response from two homologous models with different context windows. Also, the role of CAM is to measure the difficulty of understanding the long input contexts due to long-range dependencies by evaluating whether the model's attention is focused on important segments. Built upon both proposed methods, we select the most challenging samples as the influential data to effectively frame the long-range dependencies, thereby achieving better performance of LLMs. Comprehensive experiments indicate that GATEAU effectively identifies samples enriched with long-range dependency relations and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities. 10 authors · Oct 21, 2024 3
1 MaiBaam: A Multi-Dialectal Bavarian Universal Dependency Treebank Despite the success of the Universal Dependencies (UD) project exemplified by its impressive language breadth, there is still a lack in `within-language breadth': most treebanks focus on standard languages. Even for German, the language with the most annotations in UD, so far no treebank exists for one of its language varieties spoken by over 10M people: Bavarian. To contribute to closing this gap, we present the first multi-dialect Bavarian treebank (MaiBaam) manually annotated with part-of-speech and syntactic dependency information in UD, covering multiple text genres (wiki, fiction, grammar examples, social, non-fiction). We highlight the morphosyntactic differences between the closely-related Bavarian and German and showcase the rich variability of speakers' orthographies. Our corpus includes 15k tokens, covering dialects from all Bavarian-speaking areas spanning three countries. We provide baseline parsing and POS tagging results, which are lower than results obtained on German and vary substantially between different graph-based parsers. To support further research on Bavarian syntax, we make our dataset, language-specific guidelines and code publicly available. 5 authors · Mar 15, 2024 1
- LatinCy: Synthetic Trained Pipelines for Latin NLP This paper introduces LatinCy, a set of trained general purpose Latin-language "core" pipelines for use with the spaCy natural language processing framework. The models are trained on a large amount of available Latin data, including all five of the Latin Universal Dependency treebanks, which have been preprocessed to be compatible with each other. The result is a set of general models for Latin with good performance on a number of natural language processing tasks (e.g. the top-performing model yields POS tagging, 97.41% accuracy; lemmatization, 94.66% accuracy; morphological tagging 92.76% accuracy). The paper describes the model training, including its training data and parameterization, and presents the advantages to Latin-language researchers of having a spaCy model available for NLP work. 1 authors · May 7, 2023
- Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling Semantic role labeling (SRL) is the task of identifying the predicate-argument structure of a sentence. It is typically regarded as an important step in the standard NLP pipeline. As the semantic representations are closely related to syntactic ones, we exploit syntactic information in our model. We propose a version of graph convolutional networks (GCNs), a recent class of neural networks operating on graphs, suited to model syntactic dependency graphs. GCNs over syntactic dependency trees are used as sentence encoders, producing latent feature representations of words in a sentence. We observe that GCN layers are complementary to LSTM ones: when we stack both GCN and LSTM layers, we obtain a substantial improvement over an already state-of-the-art LSTM SRL model, resulting in the best reported scores on the standard benchmark (CoNLL-2009) both for Chinese and English. 2 authors · Mar 14, 2017
- Vietnamese Semantic Role Labelling In this paper, we study semantic role labelling (SRL), a subtask of semantic parsing of natural language sentences and its application for the Vietnamese language. We present our effort in building Vietnamese PropBank, the first Vietnamese SRL corpus and a software system for labelling semantic roles of Vietnamese texts. In particular, we present a novel constituent extraction algorithm in the argument candidate identification step which is more suitable and more accurate than the common node-mapping method. In the machine learning part, our system integrates distributed word features produced by two recent unsupervised learning models in two learned statistical classifiers and makes use of integer linear programming inference procedure to improve the accuracy. The system is evaluated in a series of experiments and achieves a good result, an F_1 score of 74.77%. Our system, including corpus and software, is available as an open source project for free research and we believe that it is a good baseline for the development of future Vietnamese SRL systems. 6 authors · Nov 27, 2017
- JCoLA: Japanese Corpus of Linguistic Acceptability Neural language models have exhibited outstanding performance in a range of downstream tasks. However, there is limited understanding regarding the extent to which these models internalize syntactic knowledge, so that various datasets have recently been constructed to facilitate syntactic evaluation of language models across languages. In this paper, we introduce JCoLA (Japanese Corpus of Linguistic Acceptability), which consists of 10,020 sentences annotated with binary acceptability judgments. Specifically, those sentences are manually extracted from linguistics textbooks, handbooks and journal articles, and split into in-domain data (86 %; relatively simple acceptability judgments extracted from textbooks and handbooks) and out-of-domain data (14 %; theoretically significant acceptability judgments extracted from journal articles), the latter of which is categorized by 12 linguistic phenomena. We then evaluate the syntactic knowledge of 9 different types of Japanese language models on JCoLA. The results demonstrated that several models could surpass human performance for the in-domain data, while no models were able to exceed human performance for the out-of-domain data. Error analyses by linguistic phenomena further revealed that although neural language models are adept at handling local syntactic dependencies like argument structure, their performance wanes when confronted with long-distance syntactic dependencies like verbal agreement and NPI licensing. 3 authors · Sep 22, 2023
- Autoregressive Structured Prediction with Language Models Recent years have seen a paradigm shift in NLP towards using pretrained language models ({PLM}) for a wide range of tasks. However, there are many difficult design decisions to represent structures (e.g. tagged text, coreference chains) in a way such that they can be captured by PLMs. Prior work on structured prediction with PLMs typically flattens the structured output into a sequence, which limits the quality of structural information being learned and leads to inferior performance compared to classic discriminative models. In this work, we describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs, allowing in-structure dependencies to be learned without any loss. Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at, namely, named entity recognition, end-to-end relation extraction, and coreference resolution. 5 authors · Oct 26, 2022
- Simple BERT Models for Relation Extraction and Semantic Role Labeling We present simple BERT-based models for relation extraction and semantic role labeling. In recent years, state-of-the-art performance has been achieved using neural models by incorporating lexical and syntactic features such as part-of-speech tags and dependency trees. In this paper, extensive experiments on datasets for these two tasks show that without using any external features, a simple BERT-based model can achieve state-of-the-art performance. To our knowledge, we are the first to successfully apply BERT in this manner. Our models provide strong baselines for future research. 2 authors · Apr 10, 2019
- Different types of syntactic agreement recruit the same units within large language models Large language models (LLMs) can reliably distinguish grammatical from ungrammatical sentences, but how grammatical knowledge is represented within the models remains an open question. We investigate whether different syntactic phenomena recruit shared or distinct components in LLMs. Using a functional localization approach inspired by cognitive neuroscience, we identify the LLM units most responsive to 67 English syntactic phenomena in seven open-weight models. These units are consistently recruited across sentences containing the phenomena and causally support the models' syntactic performance. Critically, different types of syntactic agreement (e.g., subject-verb, anaphor, determiner-noun) recruit overlapping sets of units, suggesting that agreement constitutes a meaningful functional category for LLMs. This pattern holds in English, Russian, and Chinese; and further, in a cross-lingual analysis of 57 diverse languages, structurally more similar languages share more units for subject-verb agreement. Taken together, these findings reveal that syntactic agreement-a critical marker of syntactic dependencies-constitutes a meaningful category within LLMs' representational spaces. 4 authors · Dec 3, 2025
- Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies The success of long short-term memory (LSTM) neural networks in language processing is typically attributed to their ability to capture long-distance statistical regularities. Linguistic regularities are often sensitive to syntactic structure; can such dependencies be captured by LSTMs, which do not have explicit structural representations? We begin addressing this question using number agreement in English subject-verb dependencies. We probe the architecture's grammatical competence both using training objectives with an explicit grammatical target (number prediction, grammaticality judgments) and using language models. In the strongly supervised settings, the LSTM achieved very high overall accuracy (less than 1% errors), but errors increased when sequential and structural information conflicted. The frequency of such errors rose sharply in the language-modeling setting. We conclude that LSTMs can capture a non-trivial amount of grammatical structure given targeted supervision, but stronger architectures may be required to further reduce errors; furthermore, the language modeling signal is insufficient for capturing syntax-sensitive dependencies, and should be supplemented with more direct supervision if such dependencies need to be captured. 3 authors · Nov 4, 2016
- A neural joint model for Vietnamese word segmentation, POS tagging and dependency parsing We propose the first multi-task learning model for joint Vietnamese word segmentation, part-of-speech (POS) tagging and dependency parsing. In particular, our model extends the BIST graph-based dependency parser (Kiperwasser and Goldberg, 2016) with BiLSTM-CRF-based neural layers (Huang et al., 2015) for word segmentation and POS tagging. On Vietnamese benchmark datasets, experimental results show that our joint model obtains state-of-the-art or competitive performances. 1 authors · Dec 29, 2018
1 Comparing Performance of Different Linguistically-Backed Word Embeddings for Cyberbullying Detection In most cases, word embeddings are learned only from raw tokens or in some cases, lemmas. This includes pre-trained language models like BERT. To investigate on the potential of capturing deeper relations between lexical items and structures and to filter out redundant information, we propose to preserve the morphological, syntactic and other types of linguistic information by combining them with the raw tokens or lemmas. This means, for example, including parts-of-speech or dependency information within the used lexical features. The word embeddings can then be trained on the combinations instead of just raw tokens. It is also possible to later apply this method to the pre-training of huge language models and possibly enhance their performance. This would aid in tackling problems which are more sophisticated from the point of view of linguistic representation, such as detection of cyberbullying. 3 authors · Jun 4, 2022
- Pretrained Language Models for Sequential Sentence Classification As a step toward better document-level understanding, we explore classification of a sequence of sentences into their corresponding categories, a task that requires understanding sentences in context of the document. Recent successful models for this task have used hierarchical models to contextualize sentence representations, and Conditional Random Fields (CRFs) to incorporate dependencies between subsequent labels. In this work, we show that pretrained language models, BERT (Devlin et al., 2018) in particular, can be used for this task to capture contextual dependencies without the need for hierarchical encoding nor a CRF. Specifically, we construct a joint sentence representation that allows BERT Transformer layers to directly utilize contextual information from all words in all sentences. Our approach achieves state-of-the-art results on four datasets, including a new dataset of structured scientific abstracts. 5 authors · Sep 9, 2019
- Accelerating Dependency Graph Learning from Heterogeneous Categorical Event Streams via Knowledge Transfer Dependency graph, as a heterogeneous graph representing the intrinsic relationships between different pairs of system entities, is essential to many data analysis applications, such as root cause diagnosis, intrusion detection, etc. Given a well-trained dependency graph from a source domain and an immature dependency graph from a target domain, how can we extract the entity and dependency knowledge from the source to enhance the target? One way is to directly apply a mature dependency graph learned from a source domain to the target domain. But due to the domain variety problem, directly using the source dependency graph often can not achieve good performance. Traditional transfer learning methods mainly focus on numerical data and are not applicable. In this paper, we propose ACRET, a knowledge transfer based model for accelerating dependency graph learning from heterogeneous categorical event streams. In particular, we first propose an entity estimation model to filter out irrelevant entities from the source domain based on entity embedding and manifold learning. Only the entities with statistically high correlations are transferred to the target domain. On the surviving entities, we propose a dependency construction model for constructing the unbiased dependency relationships by solving a two-constraint optimization problem. The experimental results on synthetic and real-world datasets demonstrate the effectiveness and efficiency of ACRET. We also apply ACRET to a real enterprise security system for intrusion detection. Our method is able to achieve superior detection performance at least 20 days lead lag time in advance with more than 70% accuracy. 5 authors · Aug 25, 2017
- Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy Joint extraction of entities and relations aims to detect entity pairs along with their relations using a single model. Prior work typically solves this task in the extract-then-classify or unified labeling manner. However, these methods either suffer from the redundant entity pairs, or ignore the important inner structure in the process of extracting entities and relations. To address these limitations, in this paper, we first decompose the joint extraction task into two interrelated subtasks, namely HE extraction and TER extraction. The former subtask is to distinguish all head-entities that may be involved with target relations, and the latter is to identify corresponding tail-entities and relations for each extracted head-entity. Next, these two subtasks are further deconstructed into several sequence labeling problems based on our proposed span-based tagging scheme, which are conveniently solved by a hierarchical boundary tagger and a multi-span decoding algorithm. Owing to the reasonable decomposition strategy, our model can fully capture the semantic interdependency between different steps, as well as reduce noise from irrelevant entity pairs. Experimental results show that our method outperforms previous work by 5.2%, 5.9% and 21.5% (F1 score), achieving a new state-of-the-art on three public datasets 7 authors · Sep 10, 2019
- LasUIE: Unifying Information Extraction with Latent Adaptive Structure-aware Generative Language Model Universally modeling all typical information extraction tasks (UIE) with one generative language model (GLM) has revealed great potential by the latest study, where various IE predictions are unified into a linearized hierarchical expression under a GLM. Syntactic structure information, a type of effective feature which has been extensively utilized in IE community, should also be beneficial to UIE. In this work, we propose a novel structure-aware GLM, fully unleashing the power of syntactic knowledge for UIE. A heterogeneous structure inductor is explored to unsupervisedly induce rich heterogeneous structural representations by post-training an existing GLM. In particular, a structural broadcaster is devised to compact various latent trees into explicit high-order forests, helping to guide a better generation during decoding. We finally introduce a task-oriented structure fine-tuning mechanism, further adjusting the learned structures to most coincide with the end-task's need. Over 12 IE benchmarks across 7 tasks our system shows significant improvements over the baseline UIE system. Further in-depth analyses show that our GLM learns rich task-adaptive structural bias that greatly resolves the UIE crux, the long-range dependence issue and boundary identifying. Source codes are open at https://github.com/ChocoWu/LasUIE. 9 authors · Apr 13, 2023
- Improving Portuguese Semantic Role Labeling with Transformers and Transfer Learning The Natural Language Processing task of determining "Who did what to whom" is called Semantic Role Labeling. For English, recent methods based on Transformer models have allowed for major improvements in this task over the previous state of the art. However, for low resource languages, like Portuguese, currently available semantic role labeling models are hindered by scarce training data. In this paper, we explore a model architecture with only a pre-trained Transformer-based model, a linear layer, softmax and Viterbi decoding. We substantially improve the state-of-the-art performance in Portuguese by over 15 F1. Additionally, we improve semantic role labeling results in Portuguese corpora by exploiting cross-lingual transfer learning using multilingual pre-trained models, and transfer learning from dependency parsing in Portuguese, evaluating the various proposed approaches empirically. 3 authors · Jan 4, 2021
- Are BabyLMs Second Language Learners? This paper describes a linguistically-motivated approach to the 2024 edition of the BabyLM Challenge (Warstadt et al. 2023). Rather than pursuing a first language learning (L1) paradigm, we approach the challenge from a second language (L2) learning perspective. In L2 learning, there is a stronger focus on learning explicit linguistic information, such as grammatical notions, definitions of words or different ways of expressing a meaning. This makes L2 learning potentially more efficient and concise. We approximate this using data from Wiktionary, grammar examples either generated by an LLM or sourced from grammar books, and paraphrase data. We find that explicit information about word meaning (in our case, Wiktionary) does not boost model performance, while grammatical information can give a small improvement. The most impactful data ingredient is sentence paraphrases, with our two best models being trained on 1) a mix of paraphrase data and data from the BabyLM pretraining dataset, and 2) exclusively paraphrase data. 4 authors · Oct 28, 2024
- Shuo Wen Jie Zi: Rethinking Dictionaries and Glyphs for Chinese Language Pre-training We introduce CDBERT, a new learning paradigm that enhances the semantics understanding ability of the Chinese PLMs with dictionary knowledge and structure of Chinese characters. We name the two core modules of CDBERT as Shuowen and Jiezi, where Shuowen refers to the process of retrieving the most appropriate meaning from Chinese dictionaries and Jiezi refers to the process of enhancing characters' glyph representations with structure understanding. To facilitate dictionary understanding, we propose three pre-training tasks, i.e., Masked Entry Modeling, Contrastive Learning for Synonym and Antonym, and Example Learning. We evaluate our method on both modern Chinese understanding benchmark CLUE and ancient Chinese benchmark CCLUE. Moreover, we propose a new polysemy discrimination task PolyMRC based on the collected dictionary of ancient Chinese. Our paradigm demonstrates consistent improvements on previous Chinese PLMs across all tasks. Moreover, our approach yields significant boosting on few-shot setting of ancient Chinese understanding. 4 authors · May 30, 2023
- Branchformer: Parallel MLP-Attention Architectures to Capture Local and Global Context for Speech Recognition and Understanding Conformer has proven to be effective in many speech processing tasks. It combines the benefits of extracting local dependencies using convolutions and global dependencies using self-attention. Inspired by this, we propose a more flexible, interpretable and customizable encoder alternative, Branchformer, with parallel branches for modeling various ranged dependencies in end-to-end speech processing. In each encoder layer, one branch employs self-attention or its variant to capture long-range dependencies, while the other branch utilizes an MLP module with convolutional gating (cgMLP) to extract local relationships. We conduct experiments on several speech recognition and spoken language understanding benchmarks. Results show that our model outperforms both Transformer and cgMLP. It also matches with or outperforms state-of-the-art results achieved by Conformer. Furthermore, we show various strategies to reduce computation thanks to the two-branch architecture, including the ability to have variable inference complexity in a single trained model. The weights learned for merging branches indicate how local and global dependencies are utilized in different layers, which benefits model designing. 4 authors · Jul 6, 2022
- Training Normalizing Flows from Dependent Data Normalizing flows are powerful non-parametric statistical models that function as a hybrid between density estimators and generative models. Current learning algorithms for normalizing flows assume that data points are sampled independently, an assumption that is frequently violated in practice, which may lead to erroneous density estimation and data generation. We propose a likelihood objective of normalizing flows incorporating dependencies between the data points, for which we derive a flexible and efficient learning algorithm suitable for different dependency structures. We show that respecting dependencies between observations can improve empirical results on both synthetic and real-world data, and leads to higher statistical power in a downstream application to genome-wide association studies. 3 authors · Sep 29, 2022
- Enhancing Language Representation with Constructional Information for Natural Language Understanding Natural language understanding (NLU) is an essential branch of natural language processing, which relies on representations generated by pre-trained language models (PLMs). However, PLMs primarily focus on acquiring lexico-semantic information, while they may be unable to adequately handle the meaning of constructions. To address this issue, we introduce construction grammar (CxG), which highlights the pairings of form and meaning, to enrich language representation. We adopt usage-based construction grammar as the basis of our work, which is highly compatible with statistical models such as PLMs. Then a HyCxG framework is proposed to enhance language representation through a three-stage solution. First, all constructions are extracted from sentences via a slot-constraints approach. As constructions can overlap with each other, bringing redundancy and imbalance, we formulate the conditional max coverage problem for selecting the discriminative constructions. Finally, we propose a relational hypergraph attention network to acquire representation from constructional information by capturing high-order word interactions among constructions. Extensive experiments demonstrate the superiority of the proposed model on a variety of NLU tasks. 6 authors · Jun 5, 2023
1 Set-Based Prompting: Provably Solving the Language Model Order Dependency Problem The development of generative language models that can create long and coherent textual outputs via autoregression has lead to a proliferation of uses and a corresponding sweep of analyses as researches work to determine the limitations of this new paradigm. Unlike humans, these 'Large Language Models' (LLMs) are highly sensitive to small changes in their inputs, leading to unwanted inconsistency in their behavior. One problematic inconsistency when LLMs are used to answer multiple-choice questions or analyze multiple inputs is order dependency: the output of an LLM can (and often does) change significantly when sub-sequences are swapped, despite both orderings being semantically identical. In this paper we present , a technique that guarantees the output of an LLM will not have order dependence on a specified set of sub-sequences. We show that this method provably eliminates order dependency, and that it can be applied to any transformer-based LLM to enable text generation that is unaffected by re-orderings. Delving into the implications of our method, we show that, despite our inputs being out of distribution, the impact on expected accuracy is small, where the expectation is over the order of uniformly chosen shuffling of the candidate responses, and usually significantly less in practice. Thus, can be used as a 'dropped-in' method on fully trained models. Finally, we discuss how our method's success suggests that other strong guarantees can be obtained on LLM performance via modifying the input representations. 5 authors · Jun 4, 2024
- Fast and Accurate Neural CRF Constituency Parsing Estimating probability distribution is one of the core issues in the NLP field. However, in both deep learning (DL) and pre-DL eras, unlike the vast applications of linear-chain CRF in sequence labeling tasks, very few works have applied tree-structure CRF to constituency parsing, mainly due to the complexity and inefficiency of the inside-outside algorithm. This work presents a fast and accurate neural CRF constituency parser. The key idea is to batchify the inside algorithm for loss computation by direct large tensor operations on GPU, and meanwhile avoid the outside algorithm for gradient computation via efficient back-propagation. We also propose a simple two-stage bracketing-then-labeling parsing approach to improve efficiency further. To improve the parsing performance, inspired by recent progress in dependency parsing, we introduce a new scoring architecture based on boundary representation and biaffine attention, and a beneficial dropout strategy. Experiments on PTB, CTB5.1, and CTB7 show that our two-stage CRF parser achieves new state-of-the-art performance on both settings of w/o and w/ BERT, and can parse over 1,000 sentences per second. We release our code at https://github.com/yzhangcs/crfpar. 3 authors · Aug 9, 2020
- LS-Tree: Model Interpretation When the Data Are Linguistic We study the problem of interpreting trained classification models in the setting of linguistic data sets. Leveraging a parse tree, we propose to assign least-squares based importance scores to each word of an instance by exploiting syntactic constituency structure. We establish an axiomatic characterization of these importance scores by relating them to the Banzhaf value in coalitional game theory. Based on these importance scores, we develop a principled method for detecting and quantifying interactions between words in a sentence. We demonstrate that the proposed method can aid in interpretability and diagnostics for several widely-used language models. 2 authors · Feb 11, 2019
- InstructIE: A Chinese Instruction-based Information Extraction Dataset We introduce a new Information Extraction (IE) task dubbed Instruction-based IE, which aims to ask the system to follow specific instructions or guidelines to extract information. To facilitate research in this area, we construct a dataset called InstructIE, consisting of 270,000 weakly supervised data from Chinese Wikipedia and 1,000 high-quality crowdsourced annotated instances. We further evaluate the performance of various baseline models on the InstructIE dataset. The results reveal that although current models exhibit promising performance, there is still room for improvement. Furthermore, we conduct a comprehensive case study analysis, underlining the challenges inherent in the Instruction-based IE task. Code and dataset are available at https://github.com/zjunlp/DeepKE/tree/main/example/llm. 4 authors · May 19, 2023
1 Incremental Sentence Processing Mechanisms in Autoregressive Transformer Language Models Autoregressive transformer language models (LMs) possess strong syntactic abilities, often successfully handling phenomena from agreement to NPI licensing. However, the features they use to incrementally process language inputs are not well understood. In this paper, we fill this gap by studying the mechanisms underlying garden path sentence processing in LMs. We ask: (1) Do LMs use syntactic features or shallow heuristics to perform incremental sentence processing? (2) Do LMs represent only one potential interpretation, or multiple? and (3) Do LMs reanalyze or repair their initial incorrect representations? To address these questions, we use sparse autoencoders to identify interpretable features that determine which continuation - and thus which reading - of a garden path sentence the LM prefers. We find that while many important features relate to syntactic structure, some reflect syntactically irrelevant heuristics. Moreover, while most active features correspond to one reading of the sentence, some features correspond to the other, suggesting that LMs assign weight to both possibilities simultaneously. Finally, LMs do not re-use features from garden path sentence processing to answer follow-up questions. 2 authors · Dec 6, 2024
- Predicting What You Already Know Helps: Provable Self-Supervised Learning Self-supervised representation learning solves auxiliary prediction tasks (known as pretext tasks) without requiring labeled data to learn useful semantic representations. These pretext tasks are created solely using the input features, such as predicting a missing image patch, recovering the color channels of an image from context, or predicting missing words in text; yet predicting this known information helps in learning representations effective for downstream prediction tasks. We posit a mechanism exploiting the statistical connections between certain {\em reconstruction-based} pretext tasks that guarantee to learn a good representation. Formally, we quantify how the approximate independence between the components of the pretext task (conditional on the label and latent variables) allows us to learn representations that can solve the downstream task by just training a linear layer on top of the learned representation. We prove the linear layer yields small approximation error even for complex ground truth function class and will drastically reduce labeled sample complexity. Next, we show a simple modification of our method leads to nonlinear CCA, analogous to the popular SimSiam algorithm, and show similar guarantees for nonlinear CCA. 4 authors · Aug 3, 2020
- Relation Extraction with Self-determined Graph Convolutional Network Relation Extraction is a way of obtaining the semantic relationship between entities in text. The state-of-the-art methods use linguistic tools to build a graph for the text in which the entities appear and then a Graph Convolutional Network (GCN) is employed to encode the pre-built graphs. Although their performance is promising, the reliance on linguistic tools results in a non end-to-end process. In this work, we propose a novel model, the Self-determined Graph Convolutional Network (SGCN), which determines a weighted graph using a self-attention mechanism, rather using any linguistic tool. Then, the self-determined graph is encoded using a GCN. We test our model on the TACRED dataset and achieve the state-of-the-art result. Our experiments show that SGCN outperforms the traditional GCN, which uses dependency parsing tools to build the graph. 5 authors · Aug 2, 2020
1 Mapping distributional to model-theoretic semantic spaces: a baseline Word embeddings have been shown to be useful across state-of-the-art systems in many natural language processing tasks, ranging from question answering systems to dependency parsing. (Herbelot and Vecchi, 2015) explored word embeddings and their utility for modeling language semantics. In particular, they presented an approach to automatically map a standard distributional semantic space onto a set-theoretic model using partial least squares regression. We show in this paper that a simple baseline achieves a +51% relative improvement compared to their model on one of the two datasets they used, and yields competitive results on the second dataset. 1 authors · Jul 10, 2016
1 A Practical Survey on Faster and Lighter Transformers Recurrent neural networks are effective models to process sequences. However, they are unable to learn long-term dependencies because of their inherent sequential nature. As a solution, Vaswani et al. introduced the Transformer, a model solely based on the attention mechanism that is able to relate any two positions of the input sequence, hence modelling arbitrary long dependencies. The Transformer has improved the state-of-the-art across numerous sequence modelling tasks. However, its effectiveness comes at the expense of a quadratic computational and memory complexity with respect to the sequence length, hindering its adoption. Fortunately, the deep learning community has always been interested in improving the models' efficiency, leading to a plethora of solutions such as parameter sharing, pruning, mixed-precision, and knowledge distillation. Recently, researchers have directly addressed the Transformer's limitation by designing lower-complexity alternatives such as the Longformer, Reformer, Linformer, and Performer. However, due to the wide range of solutions, it has become challenging for researchers and practitioners to determine which methods to apply in practice in order to meet the desired trade-off between capacity, computation, and memory. This survey addresses this issue by investigating popular approaches to make Transformers faster and lighter and by providing a comprehensive explanation of the methods' strengths, limitations, and underlying assumptions. 3 authors · Mar 26, 2021
1 Improving Aspect-based Sentiment Analysis with Gated Graph Convolutional Networks and Syntax-based Regulation Aspect-based Sentiment Analysis (ABSA) seeks to predict the sentiment polarity of a sentence toward a specific aspect. Recently, it has been shown that dependency trees can be integrated into deep learning models to produce the state-of-the-art performance for ABSA. However, these models tend to compute the hidden/representation vectors without considering the aspect terms and fail to benefit from the overall contextual importance scores of the words that can be obtained from the dependency tree for ABSA. In this work, we propose a novel graph-based deep learning model to overcome these two issues of the prior work on ABSA. In our model, gate vectors are generated from the representation vectors of the aspect terms to customize the hidden vectors of the graph-based models toward the aspect terms. In addition, we propose a mechanism to obtain the importance scores for each word in the sentences based on the dependency trees that are then injected into the model to improve the representation vectors for ABSA. The proposed model achieves the state-of-the-art performance on three benchmark datasets. 6 authors · Oct 26, 2020
- Polyglot Semantic Parsing in APIs Traditional approaches to semantic parsing (SP) work by training individual models for each available parallel dataset of text-meaning pairs. In this paper, we explore the idea of polyglot semantic translation, or learning semantic parsing models that are trained on multiple datasets and natural languages. In particular, we focus on translating text to code signature representations using the software component datasets of Richardson and Kuhn (2017a,b). The advantage of such models is that they can be used for parsing a wide variety of input natural languages and output programming languages, or mixed input languages, using a single unified model. To facilitate modeling of this type, we develop a novel graph-based decoding framework that achieves state-of-the-art performance on the above datasets, and apply this method to two other benchmark SP tasks. 3 authors · Mar 19, 2018
- FastGraphTTS: An Ultrafast Syntax-Aware Speech Synthesis Framework This paper integrates graph-to-sequence into an end-to-end text-to-speech framework for syntax-aware modelling with syntactic information of input text. Specifically, the input text is parsed by a dependency parsing module to form a syntactic graph. The syntactic graph is then encoded by a graph encoder to extract the syntactic hidden information, which is concatenated with phoneme embedding and input to the alignment and flow-based decoding modules to generate the raw audio waveform. The model is experimented on two languages, English and Mandarin, using single-speaker, few samples of target speakers, and multi-speaker datasets, respectively. Experimental results show better prosodic consistency performance between input text and generated audio, and also get higher scores in the subjective prosodic evaluation, and show the ability of voice conversion. Besides, the efficiency of the model is largely boosted through the design of the AI chip operator with 5x acceleration. 5 authors · Sep 15, 2023
- Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning We present a simple few-shot named entity recognition (NER) system based on nearest neighbor learning and structured inference. Our system uses a supervised NER model trained on the source domain, as a feature extractor. Across several test domains, we show that a nearest neighbor classifier in this feature-space is far more effective than the standard meta-learning approaches. We further propose a cheap but effective method to capture the label dependencies between entity tags without expensive CRF training. We show that our method of combining structured decoding with nearest neighbor learning achieves state-of-the-art performance on standard few-shot NER evaluation tasks, improving F1 scores by 6% to 16% absolute points over prior meta-learning based systems. 2 authors · Oct 5, 2020
2 Visualizing and Understanding Recurrent Networks Recurrent Neural Networks (RNNs), and specifically a variant with Long Short-Term Memory (LSTM), are enjoying renewed interest as a result of successful applications in a wide range of machine learning problems that involve sequential data. However, while LSTMs provide exceptional results in practice, the source of their performance and their limitations remain rather poorly understood. Using character-level language models as an interpretable testbed, we aim to bridge this gap by providing an analysis of their representations, predictions and error types. In particular, our experiments reveal the existence of interpretable cells that keep track of long-range dependencies such as line lengths, quotes and brackets. Moreover, our comparative analysis with finite horizon n-gram models traces the source of the LSTM improvements to long-range structural dependencies. Finally, we provide analysis of the remaining errors and suggests areas for further study. 3 authors · Jun 5, 2015
- Paragraph-based Transformer Pre-training for Multi-Sentence Inference Inference tasks such as answer sentence selection (AS2) or fact verification are typically solved by fine-tuning transformer-based models as individual sentence-pair classifiers. Recent studies show that these tasks benefit from modeling dependencies across multiple candidate sentences jointly. In this paper, we first show that popular pre-trained transformers perform poorly when used for fine-tuning on multi-candidate inference tasks. We then propose a new pre-training objective that models the paragraph-level semantics across multiple input sentences. Our evaluation on three AS2 and one fact verification datasets demonstrates the superiority of our pre-training technique over the traditional ones for transformers used as joint models for multi-candidate inference tasks, as well as when used as cross-encoders for sentence-pair formulations of these tasks. Our code and pre-trained models are released at https://github.com/amazon-research/wqa-multi-sentence-inference . 4 authors · May 2, 2022
- UIUC_BioNLP at SemEval-2021 Task 11: A Cascade of Neural Models for Structuring Scholarly NLP Contributions We propose a cascade of neural models that performs sentence classification, phrase recognition, and triple extraction to automatically structure the scholarly contributions of NLP publications. To identify the most important contribution sentences in a paper, we used a BERT-based classifier with positional features (Subtask 1). A BERT-CRF model was used to recognize and characterize relevant phrases in contribution sentences (Subtask 2). We categorized the triples into several types based on whether and how their elements were expressed in text, and addressed each type using separate BERT-based classifiers as well as rules (Subtask 3). Our system was officially ranked second in Phase 1 evaluation and first in both parts of Phase 2 evaluation. After fixing a submission error in Pharse 1, our approach yields the best results overall. In this paper, in addition to a system description, we also provide further analysis of our results, highlighting its strengths and limitations. We make our code publicly available at https://github.com/Liu-Hy/nlp-contrib-graph. 3 authors · May 12, 2021
- Constraining Linear-chain CRFs to Regular Languages A major challenge in structured prediction is to represent the interdependencies within output structures. When outputs are structured as sequences, linear-chain conditional random fields (CRFs) are a widely used model class which can learn local dependencies in the output. However, the CRF's Markov assumption makes it impossible for CRFs to represent distributions with nonlocal dependencies, and standard CRFs are unable to respect nonlocal constraints of the data (such as global arity constraints on output labels). We present a generalization of CRFs that can enforce a broad class of constraints, including nonlocal ones, by specifying the space of possible output structures as a regular language L. The resulting regular-constrained CRF (RegCCRF) has the same formal properties as a standard CRF, but assigns zero probability to all label sequences not in L. Notably, RegCCRFs can incorporate their constraints during training, while related models only enforce constraints during decoding. We prove that constrained training is never worse than constrained decoding, and show empirically that it can be substantially better in practice. Additionally, we demonstrate a practical benefit on downstream tasks by incorporating a RegCCRF into a deep neural model for semantic role labeling, exceeding state-of-the-art results on a standard dataset. 3 authors · Jun 14, 2021
- Audience-specific Explanations for Machine Translation In machine translation, a common problem is that the translation of certain words even if translated can cause incomprehension of the target language audience due to different cultural backgrounds. A solution to solve this problem is to add explanations for these words. In a first step, we therefore need to identify these words or phrases. In this work we explore techniques to extract example explanations from a parallel corpus. However, the sparsity of sentences containing words that need to be explained makes building the training dataset extremely difficult. In this work, we propose a semi-automatic technique to extract these explanations from a large parallel corpus. Experiments on English->German language pair show that our method is able to extract sentence so that more than 10% of the sentences contain explanation, while only 1.9% of the original sentences contain explanations. In addition, experiments on English->French and English->Chinese language pairs also show similar conclusions. This is therefore an essential first automatic step to create a explanation dataset. Furthermore we show that the technique is robust for all three language pairs. 2 authors · Sep 22, 2023
- SciDr at SDU-2020: IDEAS -- Identifying and Disambiguating Everyday Acronyms for Scientific Domain We present our systems submitted for the shared tasks of Acronym Identification (AI) and Acronym Disambiguation (AD) held under Workshop on SDU. We mainly experiment with BERT and SciBERT. In addition, we assess the effectiveness of "BIOless" tagging and blending along with the prowess of ensembling in AI. For AD, we formulate the problem as a span prediction task, experiment with different training techniques and also leverage the use of external data. Our systems rank 11th and 3rd in AI and AD tasks respectively. 2 authors · Feb 17, 2021
- Transition-Based Dependency Parsing with Stack Long Short-Term Memory We propose a technique for learning representations of parser states in transition-based dependency parsers. Our primary innovation is a new control structure for sequence-to-sequence neural networks---the stack LSTM. Like the conventional stack data structures used in transition-based parsing, elements can be pushed to or popped from the top of the stack in constant time, but, in addition, an LSTM maintains a continuous space embedding of the stack contents. This lets us formulate an efficient parsing model that captures three facets of a parser's state: (i) unbounded look-ahead into the buffer of incoming words, (ii) the complete history of actions taken by the parser, and (iii) the complete contents of the stack of partially built tree fragments, including their internal structures. Standard backpropagation techniques are used for training and yield state-of-the-art parsing performance. 5 authors · May 29, 2015
- Long Range Language Modeling via Gated State Spaces State space models have shown to be effective at modeling long range dependencies, specially on sequence classification tasks. In this work we focus on autoregressive sequence modeling over English books, Github source code and ArXiv mathematics articles. Based on recent developments around the effectiveness of gated activation functions, we propose a new layer named Gated State Space (GSS) and show that it trains significantly faster than the diagonal version of S4 (i.e. DSS) on TPUs, is fairly competitive with several well-tuned Transformer-based baselines and exhibits zero-shot generalization to longer inputs while being straightforward to implement. Finally, we show that leveraging self-attention to model local dependencies improves the performance of GSS even further. 4 authors · Jun 26, 2022
- Constructing Code-mixed Universal Dependency Forest for Unbiased Cross-lingual Relation Extraction Latest efforts on cross-lingual relation extraction (XRE) aggressively leverage the language-consistent structural features from the universal dependency (UD) resource, while they may largely suffer from biased transfer (e.g., either target-biased or source-biased) due to the inevitable linguistic disparity between languages. In this work, we investigate an unbiased UD-based XRE transfer by constructing a type of code-mixed UD forest. We first translate the sentence of the source language to the parallel target-side language, for both of which we parse the UD tree respectively. Then, we merge the source-/target-side UD structures as a unified code-mixed UD forest. With such forest features, the gaps of UD-based XRE between the training and predicting phases can be effectively closed. We conduct experiments on the ACE XRE benchmark datasets, where the results demonstrate that the proposed code-mixed UD forests help unbiased UD-based XRE transfer, with which we achieve significant XRE performance gains. 4 authors · May 20, 2023
- Cross-Domain Keyword Extraction with Keyness Patterns Domain dependence and annotation subjectivity pose challenges for supervised keyword extraction. Based on the premises that second-order keyness patterns are existent at the community level and learnable from annotated keyword extraction datasets, this paper proposes a supervised ranking approach to keyword extraction that ranks keywords with keyness patterns consisting of independent features (such as sublanguage domain and term length) and three categories of dependent features -- heuristic features, specificity features, and representavity features. The approach uses two convolutional-neural-network based models to learn keyness patterns from keyword datasets and overcomes annotation subjectivity by training the two models with bootstrap sampling strategy. Experiments demonstrate that the approach not only achieves state-of-the-art performance on ten keyword datasets in general supervised keyword extraction with an average top-10-F-measure of 0.316 , but also robust cross-domain performance with an average top-10-F-measure of 0.346 on four datasets that are excluded in the training process. Such cross-domain robustness is attributed to the fact that community-level keyness patterns are limited in number and temperately independent of language domains, the distinction between independent features and dependent features, and the sampling training strategy that balances excess risk and lack of negative training data. 2 authors · Sep 27, 2024
- Accelerating Transformer Inference for Translation via Parallel Decoding Autoregressive decoding limits the efficiency of transformers for Machine Translation (MT). The community proposed specific network architectures and learning-based methods to solve this issue, which are expensive and require changes to the MT model, trading inference speed at the cost of the translation quality. In this paper, we propose to address the problem from the point of view of decoding algorithms, as a less explored but rather compelling direction. We propose to reframe the standard greedy autoregressive decoding of MT with a parallel formulation leveraging Jacobi and Gauss-Seidel fixed-point iteration methods for fast inference. This formulation allows to speed up existing models without training or modifications while retaining translation quality. We present three parallel decoding algorithms and test them on different languages and models showing how the parallelization introduces a speedup up to 38% w.r.t. the standard autoregressive decoding and nearly 2x when scaling the method on parallel resources. Finally, we introduce a decoding dependency graph visualizer (DDGviz) that let us see how the model has learned the conditional dependence between tokens and inspect the decoding procedure. 7 authors · May 17, 2023
- Benchmarking Complex Instruction-Following with Multiple Constraints Composition Instruction following is one of the fundamental capabilities of large language models (LLMs). As the ability of LLMs is constantly improving, they have been increasingly applied to deal with complex human instructions in real-world scenarios. Therefore, how to evaluate the ability of complex instruction-following of LLMs has become a critical research problem. Existing benchmarks mainly focus on modeling different types of constraints in human instructions while neglecting the composition of different constraints, which is an indispensable constituent in complex instructions. To this end, we propose ComplexBench, a benchmark for comprehensively evaluating the ability of LLMs to follow complex instructions composed of multiple constraints. We propose a hierarchical taxonomy for complex instructions, including 4 constraint types, 19 constraint dimensions, and 4 composition types, and manually collect a high-quality dataset accordingly. To make the evaluation reliable, we augment LLM-based evaluators with rules to effectively verify whether generated texts can satisfy each constraint and composition. Furthermore, we obtain the final evaluation score based on the dependency structure determined by different composition types. ComplexBench identifies significant deficiencies in existing LLMs when dealing with complex instructions with multiple constraints composition. 14 authors · Jul 4, 2024