new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

Active Intelligence in Video Avatars via Closed-loop World Modeling

Current video avatar generation methods excel at identity preservation and motion alignment but lack genuine agency, they cannot autonomously pursue long-term goals through adaptive environmental interaction. We address this by introducing L-IVA (Long-horizon Interactive Visual Avatar), a task and benchmark for evaluating goal-directed planning in stochastic generative environments, and ORCA (Online Reasoning and Cognitive Architecture), the first framework enabling active intelligence in video avatars. ORCA embodies Internal World Model (IWM) capabilities through two key innovations: (1) a closed-loop OTAR cycle (Observe-Think-Act-Reflect) that maintains robust state tracking under generative uncertainty by continuously verifying predicted outcomes against actual generations, and (2) a hierarchical dual-system architecture where System 2 performs strategic reasoning with state prediction while System 1 translates abstract plans into precise, model-specific action captions. By formulating avatar control as a POMDP and implementing continuous belief updating with outcome verification, ORCA enables autonomous multi-step task completion in open-domain scenarios. Extensive experiments demonstrate that ORCA significantly outperforms open-loop and non-reflective baselines in task success rate and behavioral coherence, validating our IWM-inspired design for advancing video avatar intelligence from passive animation to active, goal-oriented behavior.

  • 9 authors
·
Dec 23, 2025 2

Empirical Research on Utilizing LLM-based Agents for Automated Bug Fixing via LangGraph

This paper presents a novel framework for automated code generation and debugging, designed to improve accuracy, efficiency, and scalability in software development. The proposed system integrates three core components LangGraph, GLM4 Flash, and ChromaDB within a four step iterative workflow to deliver robust performance and seamless functionality. LangGraph serves as a graph-based library for orchestrating tasks, providing precise control and execution while maintaining a unified state object for dynamic updates and consistency. It supports multi-agent, hierarchical, and sequential processes, making it highly adaptable to complex software engineering workflows. GLM4 Flash, a large language model, leverages its advanced capabilities in natural language understanding, contextual reasoning, and multilingual support to generate accurate code snippets based on user prompts. ChromaDB acts as a vector database for semantic search and contextual memory storage, enabling the identification of patterns and the generation of context-aware bug fixes based on historical data. The system operates through a structured four-step process: (1) Code Generation, which translates natural language descriptions into executable code; (2) Code Execution, which validates the code by identifying runtime errors and inconsistencies; (3) Code Repair, which iteratively refines buggy code using ChromaDB's memory capabilities and LangGraph's state tracking; and (4) Code Update, which ensures the code meets functional and performance requirements through iterative modifications.

  • 2 authors
·
Jan 29, 2025