new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Steering Vision-Language-Action Models as Anti-Exploration: A Test-Time Scaling Approach

Vision-Language-Action (VLA) models, trained via flow-matching or diffusion objectives, excel at learning complex behaviors from large-scale, multi-modal datasets (e.g., human teleoperation, scripted policies). However, since VLAs incorporate diverse data modes in the pre-training stage, and the finetuning dataset often contains demonstration data collected in a kinematically suboptimal or undesirable way, it exists redundant action modes that are irrelevant to the success action modes of the downstream task. Specifically, we observe a critical inference-time fragility among various sampled noises after supervised finetuning of pre-trained VLAs. In this paper, we attribute this instability to the distribution shift between the VLA policy and the policy induced by stable success modes of the downstream task dataset. Thus, we propose TACO, a test-time-scaling (TTS) framework that applies a lightweight pseudo-count estimator as a high-fidelity verifier of action chunks. The VLA models integrated with TACO can execute the actions with maximum pseudo-count from all sampled action chunks, thereby preventing distribution shifts while preserving the generalization ability of VLAs since the constraint is applied only during inference. Our method resembles the classical anti-exploration principle in offline reinforcement learning (RL), and being gradient-free, it incurs significant computational benefits compared to RL update, especially for flow or diffusion-based VLAs which are difficult to perform RL update due to denoising process. Extensive experiments across four simulation benchmarks (RoboTwin2.0, Robotwin, LIBERO, SimplerEnv) and a dual-arm platform demonstrate that our method significantly improves the inference stability and success rates in downstream-task adaptations.

  • 7 authors
·
Dec 2, 2025 3

Go-Explore: a New Approach for Hard-Exploration Problems

A grand challenge in reinforcement learning is intelligent exploration, especially when rewards are sparse or deceptive. Two Atari games serve as benchmarks for such hard-exploration domains: Montezuma's Revenge and Pitfall. On both games, current RL algorithms perform poorly, even those with intrinsic motivation, which is the dominant method to improve performance on hard-exploration domains. To address this shortfall, we introduce a new algorithm called Go-Explore. It exploits the following principles: (1) remember previously visited states, (2) first return to a promising state (without exploration), then explore from it, and (3) solve simulated environments through any available means (including by introducing determinism), then robustify via imitation learning. The combined effect of these principles is a dramatic performance improvement on hard-exploration problems. On Montezuma's Revenge, Go-Explore scores a mean of over 43k points, almost 4 times the previous state of the art. Go-Explore can also harness human-provided domain knowledge and, when augmented with it, scores a mean of over 650k points on Montezuma's Revenge. Its max performance of nearly 18 million surpasses the human world record, meeting even the strictest definition of "superhuman" performance. On Pitfall, Go-Explore with domain knowledge is the first algorithm to score above zero. Its mean score of almost 60k points exceeds expert human performance. Because Go-Explore produces high-performing demonstrations automatically and cheaply, it also outperforms imitation learning work where humans provide solution demonstrations. Go-Explore opens up many new research directions into improving it and weaving its insights into current RL algorithms. It may also enable progress on previously unsolvable hard-exploration problems in many domains, especially those that harness a simulator during training (e.g. robotics).

  • 5 authors
·
Jan 30, 2019

Exploitation Is All You Need... for Exploration

Ensuring sufficient exploration is a central challenge when training meta-reinforcement learning (meta-RL) agents to solve novel environments. Conventional solutions to the exploration-exploitation dilemma inject explicit incentives such as randomization, uncertainty bonuses, or intrinsic rewards to encourage exploration. In this work, we hypothesize that an agent trained solely to maximize a greedy (exploitation-only) objective can nonetheless exhibit emergent exploratory behavior, provided three conditions are met: (1) Recurring Environmental Structure, where the environment features repeatable regularities that allow past experience to inform future choices; (2) Agent Memory, enabling the agent to retain and utilize historical interaction data; and (3) Long-Horizon Credit Assignment, where learning propagates returns over a time frame sufficient for the delayed benefits of exploration to inform current decisions. Through experiments in stochastic multi-armed bandits and temporally extended gridworlds, we observe that, when both structure and memory are present, a policy trained on a strictly greedy objective exhibits information-seeking exploratory behavior. We further demonstrate, through controlled ablations, that emergent exploration vanishes if either environmental structure or agent memory is absent (Conditions 1 & 2). Surprisingly, removing long-horizon credit assignment (Condition 3) does not always prevent emergent exploration-a result we attribute to the pseudo-Thompson Sampling effect. These findings suggest that, under the right prerequisites, exploration and exploitation need not be treated as orthogonal objectives but can emerge from a unified reward-maximization process.

  • 2 authors
·
Aug 2, 2025 2

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

Learning optimal policies in sparse rewards settings is difficult as the learning agent has little to no feedback on the quality of its actions. In these situations, a good strategy is to focus on exploration, hopefully leading to the discovery of a reward signal to improve on. A learning algorithm capable of dealing with this kind of settings has to be able to (1) explore possible agent behaviors and (2) exploit any possible discovered reward. Efficient exploration algorithms have been proposed that require to define a behavior space, that associates to an agent its resulting behavior in a space that is known to be worth exploring. The need to define this space is a limitation of these algorithms. In this work, we introduce STAX, an algorithm designed to learn a behavior space on-the-fly and to explore it while efficiently optimizing any reward discovered. It does so by separating the exploration and learning of the behavior space from the exploitation of the reward through an alternating two-steps process. In the first step, STAX builds a repertoire of diverse policies while learning a low-dimensional representation of the high-dimensional observations generated during the policies evaluation. In the exploitation step, emitters are used to optimize the performance of the discovered rewarding solutions. Experiments conducted on three different sparse reward environments show that STAX performs comparably to existing baselines while requiring much less prior information about the task as it autonomously builds the behavior space.

  • 4 authors
·
Nov 2, 2021

Exploration by Random Distribution Distillation

Exploration remains a critical challenge in online reinforcement learning, as an agent must effectively explore unknown environments to achieve high returns. Currently, the main exploration algorithms are primarily count-based methods and curiosity-based methods, with prediction-error methods being a prominent example. In this paper, we propose a novel method called Random Distribution Distillation (RDD), which samples the output of a target network from a normal distribution. RDD facilitates a more extensive exploration by explicitly treating the difference between the prediction network and the target network as an intrinsic reward. Furthermore, by introducing randomness into the output of the target network for a given state and modeling it as a sample from a normal distribution, intrinsic rewards are bounded by two key components: a pseudo-count term ensuring proper exploration decay and a discrepancy term accounting for predictor convergence. We demonstrate that RDD effectively unifies both count-based and prediction-error approaches. It retains the advantages of prediction-error methods in high-dimensional spaces, while also implementing an intrinsic reward decay mode akin to the pseudo-count method. In the experimental section, RDD is compared with more advanced methods in a series of environments. Both theoretical analysis and experimental results confirm the effectiveness of our approach in improving online exploration for reinforcement learning tasks.

  • 7 authors
·
May 16, 2025

Learning in Sparse Rewards settings through Quality-Diversity algorithms

In the Reinforcement Learning (RL) framework, the learning is guided through a reward signal. This means that in situations of sparse rewards the agent has to focus on exploration, in order to discover which action, or set of actions leads to the reward. RL agents usually struggle with this. Exploration is the focus of Quality-Diversity (QD) methods. In this thesis, we approach the problem of sparse rewards with these algorithms, and in particular with Novelty Search (NS). This is a method that only focuses on the diversity of the possible policies behaviors. The first part of the thesis focuses on learning a representation of the space in which the diversity of the policies is evaluated. In this regard, we propose the TAXONS algorithm, a method that learns a low-dimensional representation of the search space through an AutoEncoder. While effective, TAXONS still requires information on when to capture the observation used to learn said space. For this, we study multiple ways, and in particular the signature transform, to encode information about the whole trajectory of observations. The thesis continues with the introduction of the SERENE algorithm, a method that can efficiently focus on the interesting parts of the search space. This method separates the exploration of the search space from the exploitation of the reward through a two-alternating-steps approach. The exploration is performed through NS. Any discovered reward is then locally exploited through emitters. The third and final contribution combines TAXONS and SERENE into a single approach: STAX. Throughout this thesis, we introduce methods that lower the amount of prior information needed in sparse rewards settings. These contributions are a promising step towards the development of methods that can autonomously explore and find high-performance policies in a variety of sparse rewards settings.

  • 1 authors
·
Mar 2, 2022

Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments

Consider the problem of exploration in sparse-reward or reward-free environments, such as in Montezuma's Revenge. In the curiosity-driven paradigm, the agent is rewarded for how much each realized outcome differs from their predicted outcome. But using predictive error as intrinsic motivation is fragile in stochastic environments, as the agent may become trapped by high-entropy areas of the state-action space, such as a "noisy TV". In this work, we study a natural solution derived from structural causal models of the world: Our key idea is to learn representations of the future that capture precisely the unpredictable aspects of each outcome -- which we use as additional input for predictions, such that intrinsic rewards only reflect the predictable aspects of world dynamics. First, we propose incorporating such hindsight representations into models to disentangle "noise" from "novelty", yielding Curiosity in Hindsight: a simple and scalable generalization of curiosity that is robust to stochasticity. Second, we instantiate this framework for the recently introduced BYOL-Explore algorithm as our prime example, resulting in the noise-robust BYOL-Hindsight. Third, we illustrate its behavior under a variety of different stochasticities in a grid world, and find improvements over BYOL-Explore in hard-exploration Atari games with sticky actions. Notably, we show state-of-the-art results in exploring Montezuma's Revenge with sticky actions, while preserving performance in the non-sticky setting.

  • 6 authors
·
Nov 18, 2022

TopoNav: Topological Navigation for Efficient Exploration in Sparse Reward Environments

Autonomous robots exploring unknown areas face a significant challenge -- navigating effectively without prior maps and with limited external feedback. This challenge intensifies in sparse reward environments, where traditional exploration techniques often fail. In this paper, we introduce TopoNav, a novel framework that empowers robots to overcome these constraints and achieve efficient, adaptable, and goal-oriented exploration. TopoNav's fundamental building blocks are active topological mapping, intrinsic reward mechanisms, and hierarchical objective prioritization. Throughout its exploration, TopoNav constructs a dynamic topological map that captures key locations and pathways. It utilizes intrinsic rewards to guide the robot towards designated sub-goals within this map, fostering structured exploration even in sparse reward settings. To ensure efficient navigation, TopoNav employs the Hierarchical Objective-Driven Active Topologies framework, enabling the robot to prioritize immediate tasks like obstacle avoidance while maintaining focus on the overall goal. We demonstrate TopoNav's effectiveness in simulated environments that replicate real-world conditions. Our results reveal significant improvements in exploration efficiency, navigational accuracy, and adaptability to unforeseen obstacles, showcasing its potential to revolutionize autonomous exploration in a wide range of applications, including search and rescue, environmental monitoring, and planetary exploration.

  • 6 authors
·
Feb 6, 2024

DrM: Mastering Visual Reinforcement Learning through Dormant Ratio Minimization

Visual reinforcement learning (RL) has shown promise in continuous control tasks. Despite its progress, current algorithms are still unsatisfactory in virtually every aspect of the performance such as sample efficiency, asymptotic performance, and their robustness to the choice of random seeds. In this paper, we identify a major shortcoming in existing visual RL methods that is the agents often exhibit sustained inactivity during early training, thereby limiting their ability to explore effectively. Expanding upon this crucial observation, we additionally unveil a significant correlation between the agents' inclination towards motorically inactive exploration and the absence of neuronal activity within their policy networks. To quantify this inactivity, we adopt dormant ratio as a metric to measure inactivity in the RL agent's network. Empirically, we also recognize that the dormant ratio can act as a standalone indicator of an agent's activity level, regardless of the received reward signals. Leveraging the aforementioned insights, we introduce DrM, a method that uses three core mechanisms to guide agents' exploration-exploitation trade-offs by actively minimizing the dormant ratio. Experiments demonstrate that DrM achieves significant improvements in sample efficiency and asymptotic performance with no broken seeds (76 seeds in total) across three continuous control benchmark environments, including DeepMind Control Suite, MetaWorld, and Adroit. Most importantly, DrM is the first model-free algorithm that consistently solves tasks in both the Dog and Manipulator domains from the DeepMind Control Suite as well as three dexterous hand manipulation tasks without demonstrations in Adroit, all based on pixel observations.

  • 15 authors
·
Oct 30, 2023

When Greedy Wins: Emergent Exploitation Bias in Meta-Bandit LLM Training

While Large Language Models (LLMs) hold promise to become autonomous agents, they often explore suboptimally in sequential decision-making. Recent work has sought to enhance this capability via supervised fine-tuning (SFT) or reinforcement learning (RL), improving regret on the classic multi-armed bandit task. However, it remains unclear how these learning methods shape exploration strategies and how well they generalize. We investigate both paradigms by training LLMs with SFT on expert trajectories and RL with a range of tailored reward signals including a strategic, regret-shaped reward to reduce variance, and an algorithmic reward that enables oracle imitation. The resulting agents outperform pre-trained models and achieve performance comparable to Upper Confidence Bound (UCB) and Thompson Sampling, with robust generalization to 6x longer horizons and across bandit families. Behavioral analysis reveals that gains often stem from more sophisticated but greedier exploitation: RL/SFT agents are more prone to early catastrophic failure than pre-trained models, prematurely abandoning exploration. Furthermore, agents trained to imitate UCB learn to outperform their teacher by adopting more exploitative variants. Our findings clarify when each training paradigm is preferable and advocate tailored reward design and evaluation beyond average regret to promote robust exploratory behavior.

DukeNLPGroup Duke NLP
·
Sep 29, 2025

Rethinking Entropy Interventions in RLVR: An Entropy Change Perspective

While Reinforcement Learning with Verifiable Rewards (RLVR) can enhance LLM reasoning, its training process poses a critical risk: entropy collapse. This phenomenon is a rapid loss of policy diversity, stemming from the exploration-exploitation imbalance and leading to a lack of generalization. Recent entropy-intervention methods aim to prevent entropy collapse, yet their underlying mechanisms remain unclear. In this paper, we conduct a quantitative analysis to reveal token-level entropy changes and how existing entropy intervention methods help avoid entropy collapse. Our findings point out a fundamental limitation of existing methods: they attempt to control entropy dynamics indirectly. By only affecting related factors, such as the advantage signal and generation probability, their effectiveness is inherently limited and could potentially fail. To address this limitation, we introduce an entropy-change-aware reweighting scheme, namely Stabilizing Token-level Entropy-changE via Reweighting (STEER), that adaptively stabilizes entropy dynamics through fine-grained token-level adjustments. Our approach mitigates over-exploitation while fostering robust exploration. Extensive experiments demonstrate that STEER significantly mitigates entropy collapse, stabilizes entropy dynamics, and achieves stronger downstream performance across various mathematical reasoning benchmarks \footnote{Our code is available at https://github.com/zz-haooo/STEER.

  • 9 authors
·
Oct 11, 2025

Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs

We study reward-free reinforcement learning (RL) with linear function approximation, where the agent works in two phases: (1) in the exploration phase, the agent interacts with the environment but cannot access the reward; and (2) in the planning phase, the agent is given a reward function and is expected to find a near-optimal policy based on samples collected in the exploration phase. The sample complexities of existing reward-free algorithms have a polynomial dependence on the planning horizon, which makes them intractable for long planning horizon RL problems. In this paper, we propose a new reward-free algorithm for learning linear mixture Markov decision processes (MDPs), where the transition probability can be parameterized as a linear combination of known feature mappings. At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward and a high-order moment estimator for the aleatoric and epistemic uncertainties. When the total reward is bounded by 1, we show that our algorithm only needs to explore tilde O( d^2varepsilon^{-2}) episodes to find an varepsilon-optimal policy, where d is the dimension of the feature mapping. The sample complexity of our algorithm only has a polylogarithmic dependence on the planning horizon and therefore is ``horizon-free''. In addition, we provide an Omega(d^2varepsilon^{-2}) sample complexity lower bound, which matches the sample complexity of our algorithm up to logarithmic factors, suggesting that our algorithm is optimal.

  • 3 authors
·
Mar 17, 2023

A Provably Efficient Sample Collection Strategy for Reinforcement Learning

One of the challenges in online reinforcement learning (RL) is that the agent needs to trade off the exploration of the environment and the exploitation of the samples to optimize its behavior. Whether we optimize for regret, sample complexity, state-space coverage or model estimation, we need to strike a different exploration-exploitation trade-off. In this paper, we propose to tackle the exploration-exploitation problem following a decoupled approach composed of: 1) An "objective-specific" algorithm that (adaptively) prescribes how many samples to collect at which states, as if it has access to a generative model (i.e., a simulator of the environment); 2) An "objective-agnostic" sample collection exploration strategy responsible for generating the prescribed samples as fast as possible. Building on recent methods for exploration in the stochastic shortest path problem, we first provide an algorithm that, given as input the number of samples b(s,a) needed in each state-action pair, requires O(B D + D^{3/2} S^2 A) time steps to collect the B=sum_{s,a} b(s,a) desired samples, in any unknown communicating MDP with S states, A actions and diameter D. Then we show how this general-purpose exploration algorithm can be paired with "objective-specific" strategies that prescribe the sample requirements to tackle a variety of settings -- e.g., model estimation, sparse reward discovery, goal-free cost-free exploration in communicating MDPs -- for which we obtain improved or novel sample complexity guarantees.

  • 4 authors
·
Jul 13, 2020

MarsExplorer: Exploration of Unknown Terrains via Deep Reinforcement Learning and Procedurally Generated Environments

This paper is an initial endeavor to bridge the gap between powerful Deep Reinforcement Learning methodologies and the problem of exploration/coverage of unknown terrains. Within this scope, MarsExplorer, an openai-gym compatible environment tailored to exploration/coverage of unknown areas, is presented. MarsExplorer translates the original robotics problem into a Reinforcement Learning setup that various off-the-shelf algorithms can tackle. Any learned policy can be straightforwardly applied to a robotic platform without an elaborate simulation model of the robot's dynamics to apply a different learning/adaptation phase. One of its core features is the controllable multi-dimensional procedural generation of terrains, which is the key for producing policies with strong generalization capabilities. Four different state-of-the-art RL algorithms (A3C, PPO, Rainbow, and SAC) are trained on the MarsExplorer environment, and a proper evaluation of their results compared to the average human-level performance is reported. In the follow-up experimental analysis, the effect of the multi-dimensional difficulty setting on the learning capabilities of the best-performing algorithm (PPO) is analyzed. A milestone result is the generation of an exploration policy that follows the Hilbert curve without providing this information to the environment or rewarding directly or indirectly Hilbert-curve-like trajectories. The experimental analysis is concluded by evaluating PPO learned policy algorithm side-by-side with frontier-based exploration strategies. A study on the performance curves revealed that PPO-based policy was capable of performing adaptive-to-the-unknown-terrain sweeping without leaving expensive-to-revisit areas uncovered, underlying the capability of RL-based methodologies to tackle exploration tasks efficiently. The source code can be found at: https://github.com/dimikout3/MarsExplorer.

  • 4 authors
·
Jul 21, 2021

More Than One Teacher: Adaptive Multi-Guidance Policy Optimization for Diverse Exploration

Reinforcement Learning with Verifiable Rewards (RLVR) is a promising paradigm for enhancing the reasoning ability in Large Language Models (LLMs). However, prevailing methods primarily rely on self-exploration or a single off-policy teacher to elicit long chain-of-thought (LongCoT) reasoning, which may introduce intrinsic model biases and restrict exploration, ultimately limiting reasoning diversity and performance. Drawing inspiration from multi-teacher strategies in knowledge distillation, we introduce Adaptive Multi-Guidance Policy Optimization (AMPO), a novel framework that adaptively leverages guidance from multiple proficient teacher models, but only when the on-policy model fails to generate correct solutions. This "guidance-on-demand" approach expands exploration while preserving the value of self-discovery. Moreover, AMPO incorporates a comprehension-based selection mechanism, prompting the student to learn from the reasoning paths that it is most likely to comprehend, thus balancing broad exploration with effective exploitation. Extensive experiments show AMPO substantially outperforms a strong baseline (GRPO), with a 4.3% improvement on mathematical reasoning tasks and 12.2% on out-of-distribution tasks, while significantly boosting Pass@k performance and enabling more diverse exploration. Notably, using four peer-sized teachers, our method achieves comparable results to approaches that leverage a single, more powerful teacher (e.g., DeepSeek-R1) with more data. These results demonstrate a more efficient and scalable path to superior reasoning and generalizability. Our code is available at https://github.com/SII-Enigma/AMPO.

  • 8 authors
·
Oct 2, 2025

Learn the Ropes, Then Trust the Wins: Self-imitation with Progressive Exploration for Agentic Reinforcement Learning

Reinforcement learning (RL) is the dominant paradigm for sharpening strategic tool use capabilities of LLMs on long-horizon, sparsely-rewarded agent tasks, yet it faces a fundamental challenge of exploration-exploitation trade-off. Existing studies stimulate exploration through the lens of policy entropy, but such mechanical entropy maximization is prone to RL training instability due to the multi-turn distribution shifting. In this paper, we target the progressive exploration-exploitation balance under the guidance of the agent own experiences without succumbing to either entropy collapsing or runaway divergence. We propose SPEAR, a curriculum-based self-imitation learning (SIL) recipe for training agentic LLMs. It extends the vanilla SIL framework, where a replay buffer stores self-generated promising trajectories for off-policy update, by gradually steering the policy evolution within a well-balanced range of entropy across stages. Specifically, our approach incorporates a curriculum to manage the exploration process, utilizing intrinsic rewards to foster skill-level exploration and facilitating action-level exploration through SIL. At first, the auxiliary tool call reward plays a critical role in the accumulation of tool-use skills, enabling broad exposure to the unfamiliar distributions of the environment feedback with an upward entropy trend. As training progresses, self-imitation gets strengthened to exploit existing successful patterns from replayed experiences for comparative action-level exploration, accelerating solution iteration without unbounded entropy growth. To further stabilize training, we recalibrate the advantages of experiences in the replay buffer to address the potential policy drift. Reugularizations such as the clipping of tokens with high covariance between probability and advantage are introduced to the trajectory-level entropy control to curb over-confidence.

tencent Tencent
·
Sep 26, 2025 4

Exploration v.s. Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward

This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.

columbia Columbia University
·
Dec 18, 2025 2

SACSoN: Scalable Autonomous Control for Social Navigation

Machine learning provides a powerful tool for building socially compliant robotic systems that go beyond simple predictive models of human behavior. By observing and understanding human interactions from past experiences, learning can enable effective social navigation behaviors directly from data. In this paper, our goal is to develop methods for training policies for socially unobtrusive navigation, such that robots can navigate among humans in ways that don't disturb human behavior. We introduce a definition for such behavior based on the counterfactual perturbation of the human: if the robot had not intruded into the space, would the human have acted in the same way? By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space. Instantiating this principle requires training policies to minimize their effect on human behavior, and this in turn requires data that allows us to model the behavior of humans in the presence of robots. Therefore, our approach is based on two key contributions. First, we collect a large dataset where an indoor mobile robot interacts with human bystanders. Second, we utilize this dataset to train policies that minimize counterfactual perturbation. We provide supplementary videos and make publicly available the largest-of-its-kind visual navigation dataset on our project page.

  • 4 authors
·
Jun 2, 2023

Near-optimal Conservative Exploration in Reinforcement Learning under Episode-wise Constraints

This paper investigates conservative exploration in reinforcement learning where the performance of the learning agent is guaranteed to be above a certain threshold throughout the learning process. It focuses on the tabular episodic Markov Decision Process (MDP) setting that has finite states and actions. With the knowledge of an existing safe baseline policy, an algorithm termed as StepMix is proposed to balance the exploitation and exploration while ensuring that the conservative constraint is never violated in each episode with high probability. StepMix features a unique design of a mixture policy that adaptively and smoothly interpolates between the baseline policy and the optimistic policy. Theoretical analysis shows that StepMix achieves near-optimal regret order as in the constraint-free setting, indicating that obeying the stringent episode-wise conservative constraint does not compromise the learning performance. Besides, a randomization-based EpsMix algorithm is also proposed and shown to achieve the same performance as StepMix. The algorithm design and theoretical analysis are further extended to the setting where the baseline policy is not given a priori but must be learned from an offline dataset, and it is proved that similar conservative guarantee and regret can be achieved if the offline dataset is sufficiently large. Experiment results corroborate the theoretical analysis and demonstrate the effectiveness of the proposed conservative exploration strategies.

  • 4 authors
·
Jun 9, 2023

Discovering Temporally-Aware Reinforcement Learning Algorithms

Recent advancements in meta-learning have enabled the automatic discovery of novel reinforcement learning algorithms parameterized by surrogate objective functions. To improve upon manually designed algorithms, the parameterization of this learned objective function must be expressive enough to represent novel principles of learning (instead of merely recovering already established ones) while still generalizing to a wide range of settings outside of its meta-training distribution. However, existing methods focus on discovering objective functions that, like many widely used objective functions in reinforcement learning, do not take into account the total number of steps allowed for training, or "training horizon". In contrast, humans use a plethora of different learning objectives across the course of acquiring a new ability. For instance, students may alter their studying techniques based on the proximity to exam deadlines and their self-assessed capabilities. This paper contends that ignoring the optimization time horizon significantly restricts the expressive potential of discovered learning algorithms. We propose a simple augmentation to two existing objective discovery approaches that allows the discovered algorithm to dynamically update its objective function throughout the agent's training procedure, resulting in expressive schedules and increased generalization across different training horizons. In the process, we find that commonly used meta-gradient approaches fail to discover such adaptive objective functions while evolution strategies discover highly dynamic learning rules. We demonstrate the effectiveness of our approach on a wide range of tasks and analyze the resulting learned algorithms, which we find effectively balance exploration and exploitation by modifying the structure of their learning rules throughout the agent's lifetime.

  • 6 authors
·
Feb 8, 2024

Explore and Control with Adversarial Surprise

Unsupervised reinforcement learning (RL) studies how to leverage environment statistics to learn useful behaviors without the cost of reward engineering. However, a central challenge in unsupervised RL is to extract behaviors that meaningfully affect the world and cover the range of possible outcomes, without getting distracted by inherently unpredictable, uncontrollable, and stochastic elements in the environment. To this end, we propose an unsupervised RL method designed for high-dimensional, stochastic environments based on an adversarial game between two policies (which we call Explore and Control) controlling a single body and competing over the amount of observation entropy the agent experiences. The Explore agent seeks out states that maximally surprise the Control agent, which in turn aims to minimize surprise, and thereby manipulate the environment to return to familiar and predictable states. The competition between these two policies drives them to seek out increasingly surprising parts of the environment while learning to gain mastery over them. We show formally that the resulting algorithm maximizes coverage of the underlying state in block MDPs with stochastic observations, providing theoretical backing to our hypothesis that this procedure avoids uncontrollable and stochastic distractions. Our experiments further demonstrate that Adversarial Surprise leads to the emergence of complex and meaningful skills, and outperforms state-of-the-art unsupervised reinforcement learning methods in terms of both exploration and zero-shot transfer to downstream tasks.

  • 8 authors
·
Jul 12, 2021

Intelligent Go-Explore: Standing on the Shoulders of Giant Foundation Models

Go-Explore is a powerful family of algorithms designed to solve hard-exploration problems, built on the principle of archiving discovered states, and iteratively returning to and exploring from the most promising states. This approach has led to superhuman performance across a wide variety of challenging problems including Atari games and robotic control, but requires manually designing heuristics to guide exploration, which is time-consuming and infeasible in general. To resolve this, we propose Intelligent Go-Explore (IGE) which greatly extends the scope of the original Go-Explore by replacing these heuristics with the intelligence and internalized human notions of interestingness captured by giant foundation models (FMs). This provides IGE with a human-like ability to instinctively identify how interesting or promising any new state is (e.g. discovering new objects, locations, or behaviors), even in complex environments where heuristics are hard to define. Moreover, IGE offers the exciting and previously impossible opportunity to recognize and capitalize on serendipitous discoveries that cannot be predicted ahead of time. We evaluate IGE on a range of language-based tasks that require search and exploration. In Game of 24, a multistep mathematical reasoning problem, IGE reaches 100% success rate 70.8% faster than the best classic graph search baseline. Next, in BabyAI-Text, a challenging partially observable gridworld, IGE exceeds the previous SOTA with orders of magnitude fewer online samples. Finally, in TextWorld, we show the unique ability of IGE to succeed in settings requiring long-horizon exploration where prior SOTA FM agents like Reflexion completely fail. Overall, IGE combines the tremendous strengths of FMs and the powerful Go-Explore algorithm, opening up a new frontier of research into creating more generally capable agents with impressive exploration capabilities.

  • 3 authors
·
May 23, 2024

Offline Guarded Safe Reinforcement Learning for Medical Treatment Optimization Strategies

When applying offline reinforcement learning (RL) in healthcare scenarios, the out-of-distribution (OOD) issues pose significant risks, as inappropriate generalization beyond clinical expertise can result in potentially harmful recommendations. While existing methods like conservative Q-learning (CQL) attempt to address the OOD issue, their effectiveness is limited by only constraining action selection by suppressing uncertain actions. This action-only regularization imitates clinician actions that prioritize short-term rewards, but it fails to regulate downstream state trajectories, thereby limiting the discovery of improved long-term treatment strategies. To safely improve policy beyond clinician recommendations while ensuring that state-action trajectories remain in-distribution, we propose Offline Guarded Safe Reinforcement Learning (OGSRL), a theoretically grounded model-based offline RL framework. OGSRL introduces a novel dual constraint mechanism for improving policy with reliability and safety. First, the OOD guardian is established to specify clinically validated regions for safe policy exploration. By constraining optimization within these regions, it enables the reliable exploration of treatment strategies that outperform clinician behavior by leveraging the full patient state history, without drifting into unsupported state-action trajectories. Second, we introduce a safety cost constraint that encodes medical knowledge about physiological safety boundaries, providing domain-specific safeguards even in areas where training data might contain potentially unsafe interventions. Notably, we provide theoretical guarantees on safety and near-optimality: policies that satisfy these constraints remain in safe and reliable regions and achieve performance close to the best possible policy supported by the data.

  • 6 authors
·
May 22, 2025

Representation-Based Exploration for Language Models: From Test-Time to Post-Training

Reinforcement learning (RL) promises to expand the capabilities of language models, but it is unclear if current RL techniques promote the discovery of novel behaviors, or simply sharpen those already present in the base model. In this paper, we investigate the value of deliberate exploration -- explicitly incentivizing the model to discover novel and diverse behaviors -- and aim to understand how the knowledge in pre-trained models can guide this search. Our main finding is that exploration with a simple, principled, representation-based bonus derived from the pre-trained language model's hidden states significantly improves diversity and pass@k rates -- both for post-training, and in a novel inference-time scaling setting we introduce. For inference-time, exploration with representation-based diversity improves efficiency, consistently improving pass@k rates across a variety of models and reasoning tasks. For example, for Qwen-2.5-14b-Instruct we obtain over 50% improvement in verifier efficiency on almost all tasks. For post-training, we show that integrating this exploration strategy into an RL pipeline improves reasoning performance over that of the initial model and over standard RL post-training. For example, on AIME 2024, our post-trained Qwen-2.5-7b-Instruct's pass@80 matches the pass@256 of GRPO on the same model, demonstrating a 3x improvement in test-time sample efficiency. Overall, our findings suggest that deliberate exploration -- with the right notion of diversity -- is a practical path toward discovery of new behaviors beyond sharpening.

  • 4 authors
·
Oct 13, 2025

Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR

A prevailing view in Reinforcement Learning for Verifiable Rewards (RLVR) interprets recent progress through the lens of an exploration-exploitation trade-off, a perspective largely shaped by token-level metrics. We re-examine this perspective, proposing that this perceived trade-off may not be a fundamental constraint but rather an artifact of the measurement level. To investigate this, we shift the analysis to the semantically rich hidden-state space, adopting Effective Rank (ER) to quantify exploration and proposing its novel first- and second-order derivatives, named Effective Rank Velocity (ERV) and Effective Rank Acceleration (ERA), to capture exploitation dynamics. Our analysis reveals that at the hidden-state level, exploration and exploitation could be decoupled (Sec. 4). This finding reveals an opportunity to enhance both capacities simultaneously. This insight motivates our method, Velocity-Exploiting Rank-Learning (VERL), the first to operationalize the principle of synergistic exploration-exploitation enhancement by directly shaping the RL advantage function. The key innovation is leveraging the theoretically stable ERA as a predictive meta-controller to create a synergistic, dual-channel incentive structure. Instead of forcing a trade-off, VERL prospectively amplifies rewards for exploration to preempt overconfidence and reinforces exploitative gains to consolidate reasoning. Experiments across diverse LLMs and reasoning benchmarks show consistent gains, including up to 21.4% absolute accuracy improvement on the challenging Gaokao 2024 dataset.

Tsinghua University
·
Sep 28, 2025 2

Submodular Reinforcement Learning

In reinforcement learning (RL), rewards of states are typically considered additive, and following the Markov assumption, they are independent of states visited previously. In many important applications, such as coverage control, experiment design and informative path planning, rewards naturally have diminishing returns, i.e., their value decreases in light of similar states visited previously. To tackle this, we propose submodular RL (SubRL), a paradigm which seeks to optimize more general, non-additive (and history-dependent) rewards modelled via submodular set functions which capture diminishing returns. Unfortunately, in general, even in tabular settings, we show that the resulting optimization problem is hard to approximate. On the other hand, motivated by the success of greedy algorithms in classical submodular optimization, we propose SubPO, a simple policy gradient-based algorithm for SubRL that handles non-additive rewards by greedily maximizing marginal gains. Indeed, under some assumptions on the underlying Markov Decision Process (MDP), SubPO recovers optimal constant factor approximations of submodular bandits. Moreover, we derive a natural policy gradient approach for locally optimizing SubRL instances even in large state- and action- spaces. We showcase the versatility of our approach by applying SubPO to several applications, such as biodiversity monitoring, Bayesian experiment design, informative path planning, and coverage maximization. Our results demonstrate sample efficiency, as well as scalability to high-dimensional state-action spaces.

  • 4 authors
·
Jul 25, 2023

The Effective Horizon Explains Deep RL Performance in Stochastic Environments

Reinforcement learning (RL) theory has largely focused on proving minimax sample complexity bounds. These require strategic exploration algorithms that use relatively limited function classes for representing the policy or value function. Our goal is to explain why deep RL algorithms often perform well in practice, despite using random exploration and much more expressive function classes like neural networks. Our work arrives at an explanation by showing that many stochastic MDPs can be solved by performing only a few steps of value iteration on the random policy's Q function and then acting greedily. When this is true, we find that it is possible to separate the exploration and learning components of RL, making it much easier to analyze. We introduce a new RL algorithm, SQIRL, that iteratively learns a near-optimal policy by exploring randomly to collect rollouts and then performing a limited number of steps of fitted-Q iteration over those rollouts. Any regression algorithm that satisfies basic in-distribution generalization properties can be used in SQIRL to efficiently solve common MDPs. This can explain why deep RL works, since it is empirically established that neural networks generalize well in-distribution. Furthermore, SQIRL explains why random exploration works well in practice. We leverage SQIRL to derive instance-dependent sample complexity bounds for RL that are exponential only in an "effective horizon" of lookahead and on the complexity of the class used for function approximation. Empirically, we also find that SQIRL performance strongly correlates with PPO and DQN performance in a variety of stochastic environments, supporting that our theoretical analysis is predictive of practical performance. Our code and data are available at https://github.com/cassidylaidlaw/effective-horizon.

  • 4 authors
·
Dec 13, 2023

WebOperator: Action-Aware Tree Search for Autonomous Agents in Web Environment

LLM-based agents often operate in a greedy, step-by-step manner, selecting actions solely based on the current observation without considering long-term consequences or alternative paths. This lack of foresight is particularly problematic in web environments, which are only partially observable-limited to browser-visible content (e.g., DOM and UI elements)-where a single misstep often requires complex and brittle navigation to undo. Without an explicit backtracking mechanism, agents struggle to correct errors or systematically explore alternative paths. Tree-search methods provide a principled framework for such structured exploration, but existing approaches lack mechanisms for safe backtracking, making them prone to unintended side effects. They also assume that all actions are reversible, ignoring the presence of irreversible actions-limitations that reduce their effectiveness in realistic web tasks. To address these challenges, we introduce WebOperator, a tree-search framework that enables reliable backtracking and strategic exploration. Our method incorporates a best-first search strategy that ranks actions by both reward estimates and safety considerations, along with a robust backtracking mechanism that verifies the feasibility of previously visited paths before replaying them, preventing unintended side effects. To further guide exploration, WebOperator generates action candidates from multiple, varied reasoning contexts to ensure diverse and robust exploration, and subsequently curates a high-quality action set by filtering out invalid actions pre-execution and merging semantically equivalent ones. Experimental results on WebArena and WebVoyager demonstrate the effectiveness of WebOperator. On WebArena, WebOperator achieves a state-of-the-art 54.6% success rate with gpt-4o, underscoring the critical advantage of integrating strategic foresight with safe execution.

  • 4 authors
·
Dec 14, 2025 2

CLASSP: a Biologically-Inspired Approach to Continual Learning through Adjustment Suppression and Sparsity Promotion

This paper introduces a new biologically-inspired training method named Continual Learning through Adjustment Suppression and Sparsity Promotion (CLASSP). CLASSP is based on two main principles observed in neuroscience, particularly in the context of synaptic transmission and Long-Term Potentiation (LTP). The first principle is a decay rate over the weight adjustment, which is implemented as a generalization of the AdaGrad optimization algorithm. This means that weights that have received many updates should have lower learning rates as they likely encode important information about previously seen data. However, this principle results in a diffuse distribution of updates throughout the model, as it promotes updates for weights that haven't been previously updated, while a sparse update distribution is preferred to leave weights unassigned for future tasks. Therefore, the second principle introduces a threshold on the loss gradient. This promotes sparse learning by updating a weight only if the loss gradient with respect to that weight is above a certain threshold, i.e. only updating weights with a significant impact on the current loss. Both principles reflect phenomena observed in LTP, where a threshold effect and a gradual saturation of potentiation have been observed. CLASSP is implemented in a Python/PyTorch class, making it applicable to any model. When compared with Elastic Weight Consolidation (EWC) using Computer Vision and sentiment analysis datasets, CLASSP demonstrates superior performance in terms of accuracy and memory footprint.

  • 1 authors
·
Apr 29, 2024

Auto MC-Reward: Automated Dense Reward Design with Large Language Models for Minecraft

Many reinforcement learning environments (e.g., Minecraft) provide only sparse rewards that indicate task completion or failure with binary values. The challenge in exploration efficiency in such environments makes it difficult for reinforcement-learning-based agents to learn complex tasks. To address this, this paper introduces an advanced learning system, named Auto MC-Reward, that leverages Large Language Models (LLMs) to automatically design dense reward functions, thereby enhancing the learning efficiency. Auto MC-Reward consists of three important components: Reward Designer, Reward Critic, and Trajectory Analyzer. Given the environment information and task descriptions, the Reward Designer first design the reward function by coding an executable Python function with predefined observation inputs. Then, our Reward Critic will be responsible for verifying the code, checking whether the code is self-consistent and free of syntax and semantic errors. Further, the Trajectory Analyzer summarizes possible failure causes and provides refinement suggestions according to collected trajectories. In the next round, Reward Designer will further refine and iterate the dense reward function based on feedback. Experiments demonstrate a significant improvement in the success rate and learning efficiency of our agents in complex tasks in Minecraft, such as obtaining diamond with the efficient ability to avoid lava, and efficiently explore trees and animals that are sparse in the plains biome.

  • 10 authors
·
Dec 14, 2023

EPO: Entropy-regularized Policy Optimization for LLM Agents Reinforcement Learning

Training LLM agents in multi-turn environments with sparse rewards, where completing a single task requires 30+ turns of interaction within an episode, presents a fundamental challenge for reinforcement learning. We identify a critical failure mode unique to this setting: the exploration-exploitation cascade failure. This cascade begins with early-stage policy premature convergence, where sparse feedback causes agents to commit to flawed, low-entropy strategies. Subsequently, agents enter late-stage policy collapse, where conventional entropy regularization becomes counterproductive, promoting chaotic exploration that destabilizes training. We propose Entropy-regularized Policy Optimization (EPO), a general framework that breaks this failure cycle through three synergistic mechanisms: (1) adopting entropy regularization in multi-turn settings to enhance exploration, (2) an entropy smoothing regularizer that bounds policy entropy within historical averages to prevent abrupt fluctuations, and (3) adaptive phase-based weighting that balances exploration and exploitation across training. Our analysis justifies that EPO guarantees monotonically decreasing entropy variance while maintaining convergence. EPO achieves up to 152% performance improvement on ScienceWorld and up to 19.8% on ALFWorld. Our work demonstrates that multi-turn sparse-reward settings require fundamentally different entropy control than traditional RL, with broad implications for LLM agent training.

  • 9 authors
·
Sep 26, 2025 2

Contextual Bandits in Payment Processing: Non-uniform Exploration and Supervised Learning at Adyen

Uniform random exploration in decision-making systems supports off-policy learning via supervision but incurs high regret, making it impractical for many applications. Conversely, non-uniform exploration offers better immediate performance but lacks support for off-policy learning. Recent research suggests that regression oracles can bridge this gap by combining non-uniform exploration with supervised learning. In this paper, we analyze these approaches within a real-world industrial context at Adyen, a large global payments processor characterized by batch logged delayed feedback, short-term memory, and dynamic action spaces under the Empirical Risk Minimization (ERM) framework. Our analysis reveals that while regression oracles significantly improve performance, they introduce challenges due to rigid algorithmic assumptions. Specifically, we observe that as a policy improves, subsequent generations may perform worse due to shifts in the reward distribution and increased class imbalance in the training data. This degradation occurs de spite improvements in other aspects of the training data, leading to decreased performance in successive policy iterations. We further explore the long-term impact of regression oracles, identifying a potential "oscillation effect." This effect arises when regression oracles influence probability estimates and the realizability of subsequent policy models, leading to fluctuations in performance across iterations. Our findings highlight the need for more adaptable algorithms that can leverage the benefits of regression oracles without introducing instability in policy performance over time.

  • 2 authors
·
Nov 30, 2024

Gradient is All You Need?

In this paper we provide a novel analytical perspective on the theoretical understanding of gradient-based learning algorithms by interpreting consensus-based optimization (CBO), a recently proposed multi-particle derivative-free optimization method, as a stochastic relaxation of gradient descent. Remarkably, we observe that through communication of the particles, CBO exhibits a stochastic gradient descent (SGD)-like behavior despite solely relying on evaluations of the objective function. The fundamental value of such link between CBO and SGD lies in the fact that CBO is provably globally convergent to global minimizers for ample classes of nonsmooth and nonconvex objective functions, hence, on the one side, offering a novel explanation for the success of stochastic relaxations of gradient descent. On the other side, contrary to the conventional wisdom for which zero-order methods ought to be inefficient or not to possess generalization abilities, our results unveil an intrinsic gradient descent nature of such heuristics. This viewpoint furthermore complements previous insights into the working principles of CBO, which describe the dynamics in the mean-field limit through a nonlinear nonlocal partial differential equation that allows to alleviate complexities of the nonconvex function landscape. Our proofs leverage a completely nonsmooth analysis, which combines a novel quantitative version of the Laplace principle (log-sum-exp trick) and the minimizing movement scheme (proximal iteration). In doing so, we furnish useful and precise insights that explain how stochastic perturbations of gradient descent overcome energy barriers and reach deep levels of nonconvex functions. Instructive numerical illustrations support the provided theoretical insights.

  • 4 authors
·
Jun 16, 2023

Dichotomy of Control: Separating What You Can Control from What You Cannot

Future- or return-conditioned supervised learning is an emerging paradigm for offline reinforcement learning (RL), where the future outcome (i.e., return) associated with an observed action sequence is used as input to a policy trained to imitate those same actions. While return-conditioning is at the heart of popular algorithms such as decision transformer (DT), these methods tend to perform poorly in highly stochastic environments, where an occasional high return can arise from randomness in the environment rather than the actions themselves. Such situations can lead to a learned policy that is inconsistent with its conditioning inputs; i.e., using the policy to act in the environment, when conditioning on a specific desired return, leads to a distribution of real returns that is wildly different than desired. In this work, we propose the dichotomy of control (DoC), a future-conditioned supervised learning framework that separates mechanisms within a policy's control (actions) from those beyond a policy's control (environment stochasticity). We achieve this separation by conditioning the policy on a latent variable representation of the future, and designing a mutual information constraint that removes any information from the latent variable associated with randomness in the environment. Theoretically, we show that DoC yields policies that are consistent with their conditioning inputs, ensuring that conditioning a learned policy on a desired high-return future outcome will correctly induce high-return behavior. Empirically, we show that DoC is able to achieve significantly better performance than DT on environments that have highly stochastic rewards and transition

  • 4 authors
·
Oct 24, 2022

ActiveVLN: Towards Active Exploration via Multi-Turn RL in Vision-and-Language Navigation

The Vision-and-Language Navigation (VLN) task requires an agent to follow natural language instructions and navigate through complex environments. Existing MLLM-based VLN methods primarily rely on imitation learning (IL) and often use DAgger for post-training to mitigate covariate shift. While effective, these approaches incur substantial data collection and training costs. Reinforcement learning (RL) offers a promising alternative. However, prior VLN RL methods lack dynamic interaction with the environment and depend on expert trajectories for reward shaping, rather than engaging in open-ended active exploration. This restricts the agent's ability to discover diverse and plausible navigation routes. To address these limitations, we propose ActiveVLN, a VLN framework that explicitly enables active exploration through multi-turn RL. In the first stage, a small fraction of expert trajectories is used for IL to bootstrap the agent. In the second stage, the agent iteratively predicts and executes actions, automatically collects diverse trajectories, and optimizes multiple rollouts via the GRPO objective. To further improve RL efficiency, we introduce a dynamic early-stopping strategy to prune long-tail or likely failed trajectories, along with additional engineering optimizations. Experiments show that ActiveVLN achieves the largest performance gains over IL baselines compared to both DAgger-based and prior RL-based post-training methods, while reaching competitive performance with state-of-the-art approaches despite using a smaller model. Code and data will be released soon.

  • 7 authors
·
Sep 15, 2025

Let it Calm: Exploratory Annealed Decoding for Verifiable Reinforcement Learning

Reinforcement learning with verifiable rewards (RLVR) is a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs), yet its success hinges on effective exploration. An ideal exploration strategy must navigate two fundamental challenges: it must preserve sample quality while also ensuring training stability. While standard fixed-temperature sampling is simple, it struggles to balance these competing demands, as high temperatures degrade sample quality and low temperatures limit discovery. In this work, we propose a simpler and more effective strategy, Exploratory Annealed Decoding (EAD), grounded in the insight that exploration is most impactful on early tokens which define a sequence's semantic direction. EAD implements an intuitive **explore-at-the-beginning, exploit-at-the-end** strategy by annealing the sampling temperature from high to low during generation. This dynamic schedule encourages meaningful, high-level diversity at the start, then gradually lowers the temperature to preserve sample quality and keep the sampling distribution close to the target policy, which is essential for stable training. We demonstrate that EAD is a lightweight, plug-and-play method that significantly improves sample efficiency, consistently outperforming fixed-temperature sampling across various RLVR algorithms and model sizes. Our work suggests that aligning exploration with the natural dynamics of sequential generation offers a robust path to improving LLM reasoning.

  • 6 authors
·
Oct 6, 2025 3

Counterfactual Conservative Q Learning for Offline Multi-agent Reinforcement Learning

Offline multi-agent reinforcement learning is challenging due to the coupling effect of both distribution shift issue common in offline setting and the high dimension issue common in multi-agent setting, making the action out-of-distribution (OOD) and value overestimation phenomenon excessively severe. Tomitigate this problem, we propose a novel multi-agent offline RL algorithm, named CounterFactual Conservative Q-Learning (CFCQL) to conduct conservative value estimation. Rather than regarding all the agents as a high dimensional single one and directly applying single agent methods to it, CFCQL calculates conservative regularization for each agent separately in a counterfactual way and then linearly combines them to realize an overall conservative value estimation. We prove that it still enjoys the underestimation property and the performance guarantee as those single agent conservative methods do, but the induced regularization and safe policy improvement bound are independent of the agent number, which is therefore theoretically superior to the direct treatment referred to above, especially when the agent number is large. We further conduct experiments on four environments including both discrete and continuous action settings on both existing and our man-made datasets, demonstrating that CFCQL outperforms existing methods on most datasets and even with a remarkable margin on some of them.

  • 5 authors
·
Sep 22, 2023

Breaking Imitation Bottlenecks: Reinforced Diffusion Powers Diverse Trajectory Generation

Most end-to-end autonomous driving methods rely on imitation learning from single expert demonstrations, often leading to conservative and homogeneous behaviors that limit generalization in complex real-world scenarios. In this work, we propose DIVER, an end-to-end driving framework that integrates reinforcement learning with diffusion-based generation to produce diverse and feasible trajectories. At the core of DIVER lies a reinforced diffusion-based generation mechanism. First, the model conditions on map elements and surrounding agents to generate multiple reference trajectories from a single ground-truth trajectory, alleviating the limitations of imitation learning that arise from relying solely on single expert demonstrations. Second, reinforcement learning is employed to guide the diffusion process, where reward-based supervision enforces safety and diversity constraints on the generated trajectories, thereby enhancing their practicality and generalization capability. Furthermore, to address the limitations of L2-based open-loop metrics in capturing trajectory diversity, we propose a novel Diversity metric to evaluate the diversity of multi-mode predictions.Extensive experiments on the closed-loop NAVSIM and Bench2Drive benchmarks, as well as the open-loop nuScenes dataset, demonstrate that DIVER significantly improves trajectory diversity, effectively addressing the mode collapse problem inherent in imitation learning.

  • 10 authors
·
Jul 5, 2025

The Off-Switch Game

It is clear that one of the primary tools we can use to mitigate the potential risk from a misbehaving AI system is the ability to turn the system off. As the capabilities of AI systems improve, it is important to ensure that such systems do not adopt subgoals that prevent a human from switching them off. This is a challenge because many formulations of rational agents create strong incentives for self-preservation. This is not caused by a built-in instinct, but because a rational agent will maximize expected utility and cannot achieve whatever objective it has been given if it is dead. Our goal is to study the incentives an agent has to allow itself to be switched off. We analyze a simple game between a human H and a robot R, where H can press R's off switch but R can disable the off switch. A traditional agent takes its reward function for granted: we show that such agents have an incentive to disable the off switch, except in the special case where H is perfectly rational. Our key insight is that for R to want to preserve its off switch, it needs to be uncertain about the utility associated with the outcome, and to treat H's actions as important observations about that utility. (R also has no incentive to switch itself off in this setting.) We conclude that giving machines an appropriate level of uncertainty about their objectives leads to safer designs, and we argue that this setting is a useful generalization of the classical AI paradigm of rational agents.

  • 4 authors
·
Nov 24, 2016