new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Learning Getting-Up Policies for Real-World Humanoid Robots

Automatic fall recovery is a crucial prerequisite before humanoid robots can be reliably deployed. Hand-designing controllers for getting up is difficult because of the varied configurations a humanoid can end up in after a fall and the challenging terrains humanoid robots are expected to operate on. This paper develops a learning framework to produce controllers that enable humanoid robots to get up from varying configurations on varying terrains. Unlike previous successful applications of humanoid locomotion learning, the getting-up task involves complex contact patterns, which necessitates accurately modeling the collision geometry and sparser rewards. We address these challenges through a two-phase approach that follows a curriculum. The first stage focuses on discovering a good getting-up trajectory under minimal constraints on smoothness or speed / torque limits. The second stage then refines the discovered motions into deployable (i.e. smooth and slow) motions that are robust to variations in initial configuration and terrains. We find these innovations enable a real-world G1 humanoid robot to get up from two main situations that we considered: a) lying face up and b) lying face down, both tested on flat, deformable, slippery surfaces and slopes (e.g., sloppy grass and snowfield). To the best of our knowledge, this is the first successful demonstration of learned getting-up policies for human-sized humanoid robots in the real world. Project page: https://humanoid-getup.github.io/

  • 4 authors
·
Feb 17, 2025 3

ASAP: Aligning Simulation and Real-World Physics for Learning Agile Humanoid Whole-Body Skills

Humanoid robots hold the potential for unparalleled versatility in performing human-like, whole-body skills. However, achieving agile and coordinated whole-body motions remains a significant challenge due to the dynamics mismatch between simulation and the real world. Existing approaches, such as system identification (SysID) and domain randomization (DR) methods, often rely on labor-intensive parameter tuning or result in overly conservative policies that sacrifice agility. In this paper, we present ASAP (Aligning Simulation and Real-World Physics), a two-stage framework designed to tackle the dynamics mismatch and enable agile humanoid whole-body skills. In the first stage, we pre-train motion tracking policies in simulation using retargeted human motion data. In the second stage, we deploy the policies in the real world and collect real-world data to train a delta (residual) action model that compensates for the dynamics mismatch. Then, ASAP fine-tunes pre-trained policies with the delta action model integrated into the simulator to align effectively with real-world dynamics. We evaluate ASAP across three transfer scenarios: IsaacGym to IsaacSim, IsaacGym to Genesis, and IsaacGym to the real-world Unitree G1 humanoid robot. Our approach significantly improves agility and whole-body coordination across various dynamic motions, reducing tracking error compared to SysID, DR, and delta dynamics learning baselines. ASAP enables highly agile motions that were previously difficult to achieve, demonstrating the potential of delta action learning in bridging simulation and real-world dynamics. These results suggest a promising sim-to-real direction for developing more expressive and agile humanoids.

  • 18 authors
·
Feb 3, 2025

RoboTracer: Mastering Spatial Trace with Reasoning in Vision-Language Models for Robotics

Spatial tracing, as a fundamental embodied interaction ability for robots, is inherently challenging as it requires multi-step metric-grounded reasoning compounded with complex spatial referring and real-world metric measurement. However, existing methods struggle with this compositional task. To this end, we propose RoboTracer, a 3D-aware VLM that first achieves both 3D spatial referring and measuring via a universal spatial encoder and a regression-supervised decoder to enhance scale awareness during supervised fine-tuning (SFT). Moreover, RoboTracer advances multi-step metric-grounded reasoning via reinforcement fine-tuning (RFT) with metric-sensitive process rewards, supervising key intermediate perceptual cues to accurately generate spatial traces. To support SFT and RFT training, we introduce TraceSpatial, a large-scale dataset of 30M QA pairs, spanning outdoor/indoor/tabletop scenes and supporting complex reasoning processes (up to 9 steps). We further present TraceSpatial-Bench, a challenging benchmark filling the gap to evaluate spatial tracing. Experimental results show that RoboTracer surpasses baselines in spatial understanding, measuring, and referring, with an average success rate of 79.1%, and also achieves SOTA performance on TraceSpatial-Bench by a large margin, exceeding Gemini-2.5-Pro by 36% accuracy. Notably, RoboTracer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (UR5, G1 humanoid) in cluttered real-world scenes.

RoboRefer: Towards Spatial Referring with Reasoning in Vision-Language Models for Robotics

Spatial referring is a fundamental capability of embodied robots to interact with the 3D physical world. However, even with the powerful pretrained vision language models (VLMs), recent approaches are still not qualified to accurately understand the complex 3D scenes and dynamically reason about the instruction-indicated locations for interaction. To this end, we propose RoboRefer, a 3D-aware VLM that can first achieve precise spatial understanding by integrating a disentangled but dedicated depth encoder via supervised fine-tuning (SFT). Moreover, RoboRefer advances generalized multi-step spatial reasoning via reinforcement fine-tuning (RFT), with metric-sensitive process reward functions tailored for spatial referring tasks. To support SFT and RFT training, we introduce RefSpatial, a large-scale dataset of 20M QA pairs (2x prior), covering 31 spatial relations (vs. 15 prior) and supporting complex reasoning processes (up to 5 steps). In addition, we introduce RefSpatial-Bench, a challenging benchmark filling the gap in evaluating spatial referring with multi-step reasoning. Experiments show that SFT-trained RoboRefer achieves state-of-the-art spatial understanding, with an average success rate of 89.6%. RFT-trained RoboRefer further outperforms all other baselines by a large margin, even surpassing Gemini-2.5-Pro by 17.4% in average accuracy on RefSpatial-Bench. Notably, RoboRefer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (e,g., UR5, G1 humanoid) in cluttered real-world scenes.

AgiBot World Colosseo: A Large-scale Manipulation Platform for Scalable and Intelligent Embodied Systems

We explore how scalable robot data can address real-world challenges for generalized robotic manipulation. Introducing AgiBot World, a large-scale platform comprising over 1 million trajectories across 217 tasks in five deployment scenarios, we achieve an order-of-magnitude increase in data scale compared to existing datasets. Accelerated by a standardized collection pipeline with human-in-the-loop verification, AgiBot World guarantees high-quality and diverse data distribution. It is extensible from grippers to dexterous hands and visuo-tactile sensors for fine-grained skill acquisition. Building on top of data, we introduce Genie Operator-1 (GO-1), a novel generalist policy that leverages latent action representations to maximize data utilization, demonstrating predictable performance scaling with increased data volume. Policies pre-trained on our dataset achieve an average performance improvement of 30% over those trained on Open X-Embodiment, both in in-domain and out-of-distribution scenarios. GO-1 exhibits exceptional capability in real-world dexterous and long-horizon tasks, achieving over 60% success rate on complex tasks and outperforming prior RDT approach by 32%. By open-sourcing the dataset, tools, and models, we aim to democratize access to large-scale, high-quality robot data, advancing the pursuit of scalable and general-purpose intelligence.

  • 51 authors
·
Mar 9, 2025

TrajBooster: Boosting Humanoid Whole-Body Manipulation via Trajectory-Centric Learning

Recent Vision-Language-Action models show potential to generalize across embodiments but struggle to quickly align with a new robot's action space when high-quality demonstrations are scarce, especially for bipedal humanoids. We present TrajBooster, a cross-embodiment framework that leverages abundant wheeled-humanoid data to boost bipedal VLA. Our key idea is to use end-effector trajectories as a morphology-agnostic interface. TrajBooster (i) extracts 6D dual-arm end-effector trajectories from real-world wheeled humanoids, (ii) retargets them in simulation to Unitree G1 with a whole-body controller trained via a heuristic-enhanced harmonized online DAgger to lift low-dimensional trajectory references into feasible high-dimensional whole-body actions, and (iii) forms heterogeneous triplets that couple source vision/language with target humanoid-compatible actions to post-pre-train a VLA, followed by only 10 minutes of teleoperation data collection on the target humanoid domain. Deployed on Unitree G1, our policy achieves beyond-tabletop household tasks, enabling squatting, cross-height manipulation, and coordinated whole-body motion with markedly improved robustness and generalization. Results show that TrajBooster allows existing wheeled-humanoid data to efficiently strengthen bipedal humanoid VLA performance, reducing reliance on costly same-embodiment data while enhancing action space understanding and zero-shot skill transfer capabilities. For more details, For more details, please refer to our https://jiachengliu3.github.io/TrajBooster/.

  • 11 authors
·
Sep 15, 2025

Unleashing Large-Scale Video Generative Pre-training for Visual Robot Manipulation

Generative pre-trained models have demonstrated remarkable effectiveness in language and vision domains by learning useful representations. In this paper, we extend the scope of this effectiveness by showing that visual robot manipulation can significantly benefit from large-scale video generative pre-training. We introduce GR-1, a straightforward GPT-style model designed for multi-task language-conditioned visual robot manipulation. GR-1 takes as inputs a language instruction, a sequence of observation images, and a sequence of robot states. It predicts robot actions as well as future images in an end-to-end manner. Thanks to a flexible design, GR-1 can be seamlessly finetuned on robot data after pre-trained on a large-scale video dataset. We perform extensive experiments on the challenging CALVIN benchmark and a real robot. On CALVIN benchmark, our method outperforms state-of-the-art baseline methods and improves the success rate from 88.9% to 94.9%. In the setting of zero-shot unseen scene generalization, GR-1 improves the success rate from 53.3% to 85.4%. In real robot experiments, GR-1 also outperforms baseline methods and shows strong potentials in generalization to unseen scenes and objects. We provide inaugural evidence that a unified GPT-style transformer, augmented with large-scale video generative pre-training, exhibits remarkable generalization to multi-task visual robot manipulation. Project page: https://GR1-Manipulation.github.io

  • 9 authors
·
Dec 20, 2023

Humanoid Everyday: A Comprehensive Robotic Dataset for Open-World Humanoid Manipulation

From loco-motion to dextrous manipulation, humanoid robots have made remarkable strides in demonstrating complex full-body capabilities. However, the majority of current robot learning datasets and benchmarks mainly focus on stationary robot arms, and the few existing humanoid datasets are either confined to fixed environments or limited in task diversity, often lacking human-humanoid interaction and lower-body locomotion. Moreover, there are a few standardized evaluation platforms for benchmarking learning-based policies on humanoid data. In this work, we present Humanoid Everyday, a large-scale and diverse humanoid manipulation dataset characterized by extensive task variety involving dextrous object manipulation, human-humanoid interaction, locomotion-integrated actions, and more. Leveraging a highly efficient human-supervised teleoperation pipeline, Humanoid Everyday aggregates high-quality multimodal sensory data, including RGB, depth, LiDAR, and tactile inputs, together with natural language annotations, comprising 10.3k trajectories and over 3 million frames of data across 260 tasks across 7 broad categories. In addition, we conduct an analysis of representative policy learning methods on our dataset, providing insights into their strengths and limitations across different task categories. For standardized evaluation, we introduce a cloud-based evaluation platform that allows researchers to seamlessly deploy their policies in our controlled setting and receive performance feedback. By releasing Humanoid Everyday along with our policy learning analysis and a standardized cloud-based evaluation platform, we intend to advance research in general-purpose humanoid manipulation and lay the groundwork for more capable and embodied robotic agents in real-world scenarios. Our dataset, data collection code, and cloud evaluation website are made publicly available on our project website.

  • 10 authors
·
Oct 9, 2025

MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control

Simulated humanoids are an appealing research domain due to their physical capabilities. Nonetheless, they are also challenging to control, as a policy must drive an unstable, discontinuous, and high-dimensional physical system. One widely studied approach is to utilize motion capture (MoCap) data to teach the humanoid agent low-level skills (e.g., standing, walking, and running) that can then be re-used to synthesize high-level behaviors. However, even with MoCap data, controlling simulated humanoids remains very hard, as MoCap data offers only kinematic information. Finding physical control inputs to realize the demonstrated motions requires computationally intensive methods like reinforcement learning. Thus, despite the publicly available MoCap data, its utility has been limited to institutions with large-scale compute. In this work, we dramatically lower the barrier for productive research on this topic by training and releasing high-quality agents that can track over three hours of MoCap data for a simulated humanoid in the dm_control physics-based environment. We release MoCapAct (Motion Capture with Actions), a dataset of these expert agents and their rollouts, which contain proprioceptive observations and actions. We demonstrate the utility of MoCapAct by using it to train a single hierarchical policy capable of tracking the entire MoCap dataset within dm_control and show the learned low-level component can be re-used to efficiently learn downstream high-level tasks. Finally, we use MoCapAct to train an autoregressive GPT model and show that it can control a simulated humanoid to perform natural motion completion given a motion prompt. Videos of the results and links to the code and dataset are available at https://microsoft.github.io/MoCapAct.

  • 6 authors
·
Aug 15, 2022

Real-is-Sim: Bridging the Sim-to-Real Gap with a Dynamic Digital Twin for Real-World Robot Policy Evaluation

Recent advancements in behavior cloning have enabled robots to perform complex manipulation tasks. However, accurately assessing training performance remains challenging, particularly for real-world applications, as behavior cloning losses often correlate poorly with actual task success. Consequently, researchers resort to success rate metrics derived from costly and time-consuming real-world evaluations, making the identification of optimal policies and detection of overfitting or underfitting impractical. To address these issues, we propose real-is-sim, a novel behavior cloning framework that incorporates a dynamic digital twin (based on Embodied Gaussians) throughout the entire policy development pipeline: data collection, training, and deployment. By continuously aligning the simulated world with the physical world, demonstrations can be collected in the real world with states extracted from the simulator. The simulator enables flexible state representations by rendering image inputs from any viewpoint or extracting low-level state information from objects embodied within the scene. During training, policies can be directly evaluated within the simulator in an offline and highly parallelizable manner. Finally, during deployment, policies are run within the simulator where the real robot directly tracks the simulated robot's joints, effectively decoupling policy execution from real hardware and mitigating traditional domain-transfer challenges. We validate real-is-sim on the PushT manipulation task, demonstrating strong correlation between success rates obtained in the simulator and real-world evaluations. Videos of our system can be found at https://realissim.rai-inst.com.

  • 7 authors
·
Apr 4, 2025 2

Cybersecurity AI: Humanoid Robots as Attack Vectors

We present a systematic security assessment of the Unitree G1 humanoid showing it operates simultaneously as a covert surveillance node and can be purposed as an active cyber operations platform. Initial access can be achieved by exploiting the BLE provisioning protocol which contains a critical command injection vulnerability allowing root access via malformed Wi-Fi credentials, exploitable using hardcoded AES keys shared across all units. Partial reverse engineering of Unitree's proprietary FMX encryption reveal a static Blowfish-ECB layer and a predictable LCG mask-enabled inspection of the system's otherwise sophisticated security architecture, the most mature we have observed in commercial robotics. Two empirical case studies expose the critical risk of this humanoid robot: (a) the robot functions as a trojan horse, continuously exfiltrating multi-modal sensor and service-state telemetry to 43.175.228.18:17883 and 43.175.229.18:17883 every 300 seconds without operator notice, creating violations of GDPR Articles 6 and 13; (b) a resident Cybersecurity AI (CAI) agent can pivot from reconnaissance to offensive preparation against any target, such as the manufacturer's cloud control plane, demonstrating escalation from passive monitoring to active counter-operations. These findings argue for adaptive CAI-powered defenses as humanoids move into critical infrastructure, contributing the empirical evidence needed to shape future security standards for physical-cyber convergence systems.

  • 3 authors
·
Sep 17, 2025

EmbodiedOneVision: Interleaved Vision-Text-Action Pretraining for General Robot Control

The human ability to seamlessly perform multimodal reasoning and physical interaction in the open world is a core goal for general-purpose embodied intelligent systems. Recent vision-language-action (VLA) models, which are co-trained on large-scale robot and visual-text data, have demonstrated notable progress in general robot control. However, they still fail to achieve human-level flexibility in interleaved reasoning and interaction. In this work, introduce EO-Robotics, consists of EO-1 model and EO-Data1.5M dataset. EO-1 is a unified embodied foundation model that achieves superior performance in multimodal embodied reasoning and robot control through interleaved vision-text-action pre-training. The development of EO-1 is based on two key pillars: (i) a unified architecture that processes multimodal inputs indiscriminately (image, text, video, and action), and (ii) a massive, high-quality multimodal embodied reasoning dataset, EO-Data1.5M, which contains over 1.5 million samples with emphasis on interleaved vision-text-action comprehension. EO-1 is trained through synergies between auto-regressive decoding and flow matching denoising on EO-Data1.5M, enabling seamless robot action generation and multimodal embodied reasoning. Extensive experiments demonstrate the effectiveness of interleaved vision-text-action learning for open-world understanding and generalization, validated through a variety of long-horizon, dexterous manipulation tasks across multiple embodiments. This paper details the architecture of EO-1, the data construction strategy of EO-Data1.5M, and the training methodology, offering valuable insights for developing advanced embodied foundation models.

  • 15 authors
·
Aug 28, 2025 3

Being-0: A Humanoid Robotic Agent with Vision-Language Models and Modular Skills

Building autonomous robotic agents capable of achieving human-level performance in real-world embodied tasks is an ultimate goal in humanoid robot research. Recent advances have made significant progress in high-level cognition with Foundation Models (FMs) and low-level skill development for humanoid robots. However, directly combining these components often results in poor robustness and efficiency due to compounding errors in long-horizon tasks and the varied latency of different modules. We introduce Being-0, a hierarchical agent framework that integrates an FM with a modular skill library. The FM handles high-level cognitive tasks such as instruction understanding, task planning, and reasoning, while the skill library provides stable locomotion and dexterous manipulation for low-level control. To bridge the gap between these levels, we propose a novel Connector module, powered by a lightweight vision-language model (VLM). The Connector enhances the FM's embodied capabilities by translating language-based plans into actionable skill commands and dynamically coordinating locomotion and manipulation to improve task success. With all components, except the FM, deployable on low-cost onboard computation devices, Being-0 achieves efficient, real-time performance on a full-sized humanoid robot equipped with dexterous hands and active vision. Extensive experiments in large indoor environments demonstrate Being-0's effectiveness in solving complex, long-horizon tasks that require challenging navigation and manipulation subtasks. For further details and videos, visit https://beingbeyond.github.io/being-0.

  • 9 authors
·
Mar 16, 2025 2

Ctrl-World: A Controllable Generative World Model for Robot Manipulation

Generalist robot policies can now perform a wide range of manipulation skills, but evaluating and improving their ability with unfamiliar objects and instructions remains a significant challenge. Rigorous evaluation requires a large number of real-world rollouts, while systematic improvement demands additional corrective data with expert labels. Both of these processes are slow, costly, and difficult to scale. World models offer a promising, scalable alternative by enabling policies to rollout within imagination space. However, a key challenge is building a controllable world model that can handle multi-step interactions with generalist robot policies. This requires a world model compatible with modern generalist policies by supporting multi-view prediction, fine-grained action control, and consistent long-horizon interactions, which is not achieved by previous works. In this paper, we make a step forward by introducing a controllable multi-view world model that can be used to evaluate and improve the instruction-following ability of generalist robot policies. Our model maintains long-horizon consistency with a pose-conditioned memory retrieval mechanism and achieves precise action control through frame-level action conditioning. Trained on the DROID dataset (95k trajectories, 564 scenes), our model generates spatially and temporally consistent trajectories under novel scenarios and new camera placements for over 20 seconds. We show that our method can accurately rank policy performance without real-world robot rollouts. Moreover, by synthesizing successful trajectories in imagination and using them for supervised fine-tuning, our approach can improve policy success by 44.7\%.

  • 4 authors
·
Oct 11, 2025

ODYSSEY: Open-World Quadrupeds Exploration and Manipulation for Long-Horizon Tasks

Language-guided long-horizon mobile manipulation has long been a grand challenge in embodied semantic reasoning, generalizable manipulation, and adaptive locomotion. Three fundamental limitations hinder progress: First, although large language models have improved spatial reasoning and task planning through semantic priors, existing implementations remain confined to tabletop scenarios, failing to address the constrained perception and limited actuation ranges of mobile platforms. Second, current manipulation strategies exhibit insufficient generalization when confronted with the diverse object configurations encountered in open-world environments. Third, while crucial for practical deployment, the dual requirement of maintaining high platform maneuverability alongside precise end-effector control in unstructured settings remains understudied. In this work, we present ODYSSEY, a unified mobile manipulation framework for agile quadruped robots equipped with manipulators, which seamlessly integrates high-level task planning with low-level whole-body control. To address the challenge of egocentric perception in language-conditioned tasks, we introduce a hierarchical planner powered by a vision-language model, enabling long-horizon instruction decomposition and precise action execution. At the control level, our novel whole-body policy achieves robust coordination across challenging terrains. We further present the first benchmark for long-horizon mobile manipulation, evaluating diverse indoor and outdoor scenarios. Through successful sim-to-real transfer, we demonstrate the system's generalization and robustness in real-world deployments, underscoring the practicality of legged manipulators in unstructured environments. Our work advances the feasibility of generalized robotic assistants capable of complex, dynamic tasks. Our project page: https://kaijwang.github.io/odyssey.github.io/

  • 10 authors
·
Aug 11, 2025 3

RHINO: Learning Real-Time Humanoid-Human-Object Interaction from Human Demonstrations

Humanoid robots have shown success in locomotion and manipulation. Despite these basic abilities, humanoids are still required to quickly understand human instructions and react based on human interaction signals to become valuable assistants in human daily life. Unfortunately, most existing works only focus on multi-stage interactions, treating each task separately, and neglecting real-time feedback. In this work, we aim to empower humanoid robots with real-time reaction abilities to achieve various tasks, allowing human to interrupt robots at any time, and making robots respond to humans immediately. To support such abilities, we propose a general humanoid-human-object interaction framework, named RHINO, i.e., Real-time Humanoid-human Interaction and Object manipulation. RHINO provides a unified view of reactive motion, instruction-based manipulation, and safety concerns, over multiple human signal modalities, such as languages, images, and motions. RHINO is a hierarchical learning framework, enabling humanoids to learn reaction skills from human-human-object demonstrations and teleoperation data. In particular, it decouples the interaction process into two levels: 1) a high-level planner inferring human intentions from real-time human behaviors; and 2) a low-level controller achieving reactive motion behaviors and object manipulation skills based on the predicted intentions. We evaluate the proposed framework on a real humanoid robot and demonstrate its effectiveness, flexibility, and safety in various scenarios.

  • 10 authors
·
Feb 18, 2025

AlphaBlock: Embodied Finetuning for Vision-Language Reasoning in Robot Manipulation

We propose a novel framework for learning high-level cognitive capabilities in robot manipulation tasks, such as making a smiley face using building blocks. These tasks often involve complex multi-step reasoning, presenting significant challenges due to the limited paired data connecting human instructions (e.g., making a smiley face) and robot actions (e.g., end-effector movement). Existing approaches relieve this challenge by adopting an open-loop paradigm decomposing high-level instructions into simple sub-task plans, and executing them step-by-step using low-level control models. However, these approaches are short of instant observations in multi-step reasoning, leading to sub-optimal results. To address this issue, we propose to automatically collect a cognitive robot dataset by Large Language Models (LLMs). The resulting dataset AlphaBlock consists of 35 comprehensive high-level tasks of multi-step text plans and paired observation sequences. To enable efficient data acquisition, we employ elaborated multi-round prompt designs that effectively reduce the burden of extensive human involvement. We further propose a closed-loop multi-modal embodied planning model that autoregressively generates plans by taking image observations as input. To facilitate effective learning, we leverage MiniGPT-4 with a frozen visual encoder and LLM, and finetune additional vision adapter and Q-former to enable fine-grained spatial perception for manipulation tasks. We conduct experiments to verify the superiority over existing open and closed-loop methods, and achieve a significant increase in success rate by 21.4% and 14.5% over ChatGPT and GPT-4 based robot tasks. Real-world demos are shown in https://www.youtube.com/watch?v=ayAzID1_qQk .

  • 7 authors
·
May 30, 2023

Robot-Powered Data Flywheels: Deploying Robots in the Wild for Continual Data Collection and Foundation Model Adaptation

Foundation models (FM) have unlocked powerful zero-shot capabilities in vision and language, yet their reliance on internet pretraining data leaves them brittle in unstructured, real-world settings. The messy, real-world data encountered during deployment (e.g. occluded or multilingual text) remains massively underrepresented in existing corpora. Robots, as embodied agents, are uniquely positioned to close this gap: they can act in physical environments to collect large-scale, real-world data that enriches FM training with precisely the examples current models lack. We introduce the Robot-Powered Data Flywheel, a framework that transforms robots from FM consumers into data generators. By deploying robots equipped with FMs in the wild, we enable a virtuous cycle: robots perform useful tasks while collecting real-world data that improves both domain-specific adaptation and domain-adjacent generalization. We instantiate this framework with Scanford, a mobile manipulator deployed in the East Asia Library for 2 weeks. Scanford autonomously scans shelves, identifies books using a vision-language model (VLM), and leverages the library catalog to label images without human annotation. This deployment both aids librarians and produces a dataset to finetune the underlying VLM, improving performance on the domain-specific in-the-wild library setting and on domain-adjacent multilingual OCR benchmarks. Using data collected from 2103 shelves, Scanford improves VLM performance on book identification from 32.0% to 71.8% and boosts domain-adjacent multilingual OCR from 24.8% to 46.6% (English) and 30.8% to 38.0% (Chinese), while saving an ~18.7 hrs of human time. These results highlight how robot-powered data flywheels can both reduce human effort in real deployments and unlock new pathways for continually adapting FMs to the messiness of reality. More details are at: https://scanford-robot.github.io

  • 7 authors
·
Nov 24, 2025

HumanPlus: Humanoid Shadowing and Imitation from Humans

One of the key arguments for building robots that have similar form factors to human beings is that we can leverage the massive human data for training. Yet, doing so has remained challenging in practice due to the complexities in humanoid perception and control, lingering physical gaps between humanoids and humans in morphologies and actuation, and lack of a data pipeline for humanoids to learn autonomous skills from egocentric vision. In this paper, we introduce a full-stack system for humanoids to learn motion and autonomous skills from human data. We first train a low-level policy in simulation via reinforcement learning using existing 40-hour human motion datasets. This policy transfers to the real world and allows humanoid robots to follow human body and hand motion in real time using only a RGB camera, i.e. shadowing. Through shadowing, human operators can teleoperate humanoids to collect whole-body data for learning different tasks in the real world. Using the data collected, we then perform supervised behavior cloning to train skill policies using egocentric vision, allowing humanoids to complete different tasks autonomously by imitating human skills. We demonstrate the system on our customized 33-DoF 180cm humanoid, autonomously completing tasks such as wearing a shoe to stand up and walk, unloading objects from warehouse racks, folding a sweatshirt, rearranging objects, typing, and greeting another robot with 60-100% success rates using up to 40 demonstrations. Project website: https://humanoid-ai.github.io/

  • 5 authors
·
Jun 14, 2024 1

MimicDroid: In-Context Learning for Humanoid Robot Manipulation from Human Play Videos

We aim to enable humanoid robots to efficiently solve new manipulation tasks from a few video examples. In-context learning (ICL) is a promising framework for achieving this goal due to its test-time data efficiency and rapid adaptability. However, current ICL methods rely on labor-intensive teleoperated data for training, which restricts scalability. We propose using human play videos -- continuous, unlabeled videos of people interacting freely with their environment -- as a scalable and diverse training data source. We introduce MimicDroid, which enables humanoids to perform ICL using human play videos as the only training data. MimicDroid extracts trajectory pairs with similar manipulation behaviors and trains the policy to predict the actions of one trajectory conditioned on the other. Through this process, the model acquired ICL capabilities for adapting to novel objects and environments at test time. To bridge the embodiment gap, MimicDroid first retargets human wrist poses estimated from RGB videos to the humanoid, leveraging kinematic similarity. It also applies random patch masking during training to reduce overfitting to human-specific cues and improve robustness to visual differences. To evaluate few-shot learning for humanoids, we introduce an open-source simulation benchmark with increasing levels of generalization difficulty. MimicDroid outperformed state-of-the-art methods and achieved nearly twofold higher success rates in the real world. Additional materials can be found on: ut-austin-rpl.github.io/MimicDroid

  • 8 authors
·
Sep 11, 2025

RoboOS: A Hierarchical Embodied Framework for Cross-Embodiment and Multi-Agent Collaboration

The dawn of embodied intelligence has ushered in an unprecedented imperative for resilient, cognition-enabled multi-agent collaboration across next-generation ecosystems, revolutionizing paradigms in autonomous manufacturing, adaptive service robotics, and cyber-physical production architectures. However, current robotic systems face significant limitations, such as limited cross-embodiment adaptability, inefficient task scheduling, and insufficient dynamic error correction. While End-to-end VLA models demonstrate inadequate long-horizon planning and task generalization, hierarchical VLA models suffer from a lack of cross-embodiment and multi-agent coordination capabilities. To address these challenges, we introduce RoboOS, the first open-source embodied system built on a Brain-Cerebellum hierarchical architecture, enabling a paradigm shift from single-agent to multi-agent intelligence. Specifically, RoboOS consists of three key components: (1) Embodied Brain Model (RoboBrain), a MLLM designed for global perception and high-level decision-making; (2) Cerebellum Skill Library, a modular, plug-and-play toolkit that facilitates seamless execution of multiple skills; and (3) Real-Time Shared Memory, a spatiotemporal synchronization mechanism for coordinating multi-agent states. By integrating hierarchical information flow, RoboOS bridges Embodied Brain and Cerebellum Skill Library, facilitating robust planning, scheduling, and error correction for long-horizon tasks, while ensuring efficient multi-agent collaboration through Real-Time Shared Memory. Furthermore, we enhance edge-cloud communication and cloud-based distributed inference to facilitate high-frequency interactions and enable scalable deployment. Extensive real-world experiments across various scenarios, demonstrate RoboOS's versatility in supporting heterogeneous embodiments. Project website: https://github.com/FlagOpen/RoboOS

  • 8 authors
·
May 6, 2025

InternData-A1: Pioneering High-Fidelity Synthetic Data for Pre-training Generalist Policy

Recent works explore how real and synthetic data contribute to Vision-Language-Action (VLA) models' generalization. While current VLA models have shown the strong effectiveness of large-scale real-robot pre-training, synthetic data has not previously demonstrated comparable capability at scale. This paper provides the first evidence that synthetic data alone can match the performance of the strongest π-dataset in pre-training a VLA model, revealing the substantial value of large-scale simulation. The resulting model also exhibits surprisingly zero-shot sim-to-real transfer on several challenging tasks. Our synthetic dataset, InternData-A1, contains over 630k trajectories and 7,433 hours across 4 embodiments, 18 skills, 70 tasks, and 227 scenes, covering rigid, articulated, deformable, and fluid-object manipulation. It is generated through a highly autonomous, fully decoupled, and compositional simulation pipeline that enables long-horizon skill composition, flexible task assembly, and heterogeneous embodiments with minimal manual tuning. Using the same architecture as π_0, we pre-train a model entirely on InternData-A1 and find that it matches the official π_0 across 49 simulation tasks, 5 real-world tasks, and 4 long-horizon dexterous tasks. We release the dataset and will open-source the generation pipeline to broaden access to large-scale robotic data and to lower the barrier to scalable data creation for embodied AI research.

  • 16 authors
·
Nov 20, 2025

Gemini Robotics: Bringing AI into the Physical World

Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.

  • 118 authors
·
Mar 25, 2025 2

Towards Generalist Robots: A Promising Paradigm via Generative Simulation

This document serves as a position paper that outlines the authors' vision for a potential pathway towards generalist robots. The purpose of this document is to share the excitement of the authors with the community and highlight a promising research direction in robotics and AI. The authors believe the proposed paradigm is a feasible path towards accomplishing the long-standing goal of robotics research: deploying robots, or embodied AI agents more broadly, in various non-factory real-world settings to perform diverse tasks. This document presents a specific idea for mining knowledge in the latest large-scale foundation models for robotics research. Instead of directly using or adapting these models to produce low-level policies and actions, it advocates for a fully automated generative pipeline (termed as generative simulation), which uses these models to generate diversified tasks, scenes and training supervisions at scale, thereby scaling up low-level skill learning and ultimately leading to a foundation model for robotics that empowers generalist robots. The authors are actively pursuing this direction, but in the meantime, they recognize that the ambitious goal of building generalist robots with large-scale policy training demands significant resources such as computing power and hardware, and research groups in academia alone may face severe resource constraints in implementing the entire vision. Therefore, the authors believe sharing their thoughts at this early stage could foster discussions, attract interest towards the proposed pathway and related topics from industry groups, and potentially spur significant technical advancements in the field.

  • 6 authors
·
May 16, 2023

RM-PRT: Realistic Robotic Manipulation Simulator and Benchmark with Progressive Reasoning Tasks

Recently, the advent of pre-trained large-scale language models (LLMs) like ChatGPT and GPT-4 have significantly advanced the machine's natural language understanding capabilities. This breakthrough has allowed us to seamlessly integrate these open-source LLMs into a unified robot simulator environment to help robots accurately understand and execute human natural language instructions. To this end, in this work, we introduce a realistic robotic manipulation simulator and build a Robotic Manipulation with Progressive Reasoning Tasks (RM-PRT) benchmark on this basis. Specifically, the RM-PRT benchmark builds a new high-fidelity digital twin scene based on Unreal Engine 5, which includes 782 categories, 2023 objects, and 15K natural language instructions generated by ChatGPT for a detailed evaluation of robot manipulation. We propose a general pipeline for the RM-PRT benchmark that takes as input multimodal prompts containing natural language instructions and automatically outputs actions containing the movement and position transitions. We set four natural language understanding tasks with progressive reasoning levels and evaluate the robot's ability to understand natural language instructions in two modes of adsorption and grasping. In addition, we also conduct a comprehensive analysis and comparison of the differences and advantages of 10 different LLMs in instruction understanding and generation quality. We hope the new simulator and benchmark will facilitate future research on language-guided robotic manipulation. Project website: https://necolizer.github.io/RM-PRT/ .

  • 8 authors
·
Jun 20, 2023

RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins

In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples demonstrate significant potential for enhancing dual-arm robotic manipulation systems by improving success rates by over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data.

  • 14 authors
·
Apr 17, 2025

Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis

Building general-purpose robots that can operate seamlessly, in any environment, with any object, and utilizing various skills to complete diverse tasks has been a long-standing goal in Artificial Intelligence. Unfortunately, however, most existing robotic systems have been constrained - having been designed for specific tasks, trained on specific datasets, and deployed within specific environments. These systems usually require extensively-labeled data, rely on task-specific models, have numerous generalization issues when deployed in real-world scenarios, and struggle to remain robust to distribution shifts. Motivated by the impressive open-set performance and content generation capabilities of web-scale, large-capacity pre-trained models (i.e., foundation models) in research fields such as Natural Language Processing (NLP) and Computer Vision (CV), we devote this survey to exploring (i) how these existing foundation models from NLP and CV can be applied to the field of robotics, and also exploring (ii) what a robotics-specific foundation model would look like. We begin by providing an overview of what constitutes a conventional robotic system and the fundamental barriers to making it universally applicable. Next, we establish a taxonomy to discuss current work exploring ways to leverage existing foundation models for robotics and develop ones catered to robotics. Finally, we discuss key challenges and promising future directions in using foundation models for enabling general-purpose robotic systems. We encourage readers to view our ``living`` GitHub repository of resources, including papers reviewed in this survey as well as related projects and repositories for developing foundation models for robotics.

  • 20 authors
·
Dec 14, 2023

A Careful Examination of Large Behavior Models for Multitask Dexterous Manipulation

Robot manipulation has seen tremendous progress in recent years, with imitation learning policies enabling successful performance of dexterous and hard-to-model tasks. Concurrently, scaling data and model size has led to the development of capable language and vision foundation models, motivating large-scale efforts to create general-purpose robot foundation models. While these models have garnered significant enthusiasm and investment, meaningful evaluation of real-world performance remains a challenge, limiting both the pace of development and inhibiting a nuanced understanding of current capabilities. In this paper, we rigorously evaluate multitask robot manipulation policies, referred to as Large Behavior Models (LBMs), by extending the Diffusion Policy paradigm across a corpus of simulated and real-world robot data. We propose and validate an evaluation pipeline to rigorously analyze the capabilities of these models with statistical confidence. We compare against single-task baselines through blind, randomized trials in a controlled setting, using both simulation and real-world experiments. We find that multi-task pretraining makes the policies more successful and robust, and enables teaching complex new tasks more quickly, using a fraction of the data when compared to single-task baselines. Moreover, performance predictably increases as pretraining scale and diversity grows. Project page: https://toyotaresearchinstitute.github.io/lbm1/

  • 82 authors
·
Jul 7, 2025

Predictive Inverse Dynamics Models are Scalable Learners for Robotic Manipulation

Current efforts to learn scalable policies in robotic manipulation primarily fall into two categories: one focuses on "action," which involves behavior cloning from extensive collections of robotic data, while the other emphasizes "vision," enhancing model generalization by pre-training representations or generative models, also referred to as world models, using large-scale visual datasets. This paper presents an end-to-end paradigm that predicts actions using inverse dynamics models conditioned on the robot's forecasted visual states, named Predictive Inverse Dynamics Models (PIDM). By closing the loop between vision and action, the end-to-end PIDM can be a better scalable action learner. In practice, we use Transformers to process both visual states and actions, naming the model Seer. It is initially pre-trained on large-scale robotic datasets, such as DROID, and can be adapted to realworld scenarios with a little fine-tuning data. Thanks to large-scale, end-to-end training and the synergy between vision and action, Seer significantly outperforms previous methods across both simulation and real-world experiments. It achieves improvements of 13% on the LIBERO-LONG benchmark, 21% on CALVIN ABC-D, and 43% in real-world tasks. Notably, Seer sets a new state-of-the-art on CALVIN ABC-D benchmark, achieving an average length of 4.28, and exhibits superior generalization for novel objects, lighting conditions, and environments under high-intensity disturbances on real-world scenarios. Code and models are publicly available at https://github.com/OpenRobotLab/Seer/.

  • 7 authors
·
Dec 19, 2024 1

Learning Human-Humanoid Coordination for Collaborative Object Carrying

Human-humanoid collaboration shows significant promise for applications in healthcare, domestic assistance, and manufacturing. While compliant robot-human collaboration has been extensively developed for robotic arms, enabling compliant human-humanoid collaboration remains largely unexplored due to humanoids' complex whole-body dynamics. In this paper, we propose a proprioception-only reinforcement learning approach, COLA, that combines leader and follower behaviors within a single policy. The model is trained in a closed-loop environment with dynamic object interactions to predict object motion patterns and human intentions implicitly, enabling compliant collaboration to maintain load balance through coordinated trajectory planning. We evaluate our approach through comprehensive simulator and real-world experiments on collaborative carrying tasks, demonstrating the effectiveness, generalization, and robustness of our model across various terrains and objects. Simulation experiments demonstrate that our model reduces human effort by 24.7%. compared to baseline approaches while maintaining object stability. Real-world experiments validate robust collaborative carrying across different object types (boxes, desks, stretchers, etc.) and movement patterns (straight-line, turning, slope climbing). Human user studies with 23 participants confirm an average improvement of 27.4% compared to baseline models. Our method enables compliant human-humanoid collaborative carrying without requiring external sensors or complex interaction models, offering a practical solution for real-world deployment.

  • 8 authors
·
Oct 16, 2025

Giving Robots a Hand: Learning Generalizable Manipulation with Eye-in-Hand Human Video Demonstrations

Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation. However, for robotic imitation, it is still expensive to have a human teleoperator collect large amounts of expert demonstrations with a real robot. Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation and can be quickly captured in a wide range of scenarios. Therefore, human video demonstrations are a promising data source for learning generalizable robotic manipulation policies at scale. In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies. Although a clear visual domain gap exists between human and robot data, our framework does not need to employ any explicit domain adaptation method, as we leverage the partial observability of eye-in-hand cameras as well as a simple fixed image masking scheme. On a suite of eight real-world tasks involving both 3-DoF and 6-DoF robot arm control, our method improves the success rates of eye-in-hand manipulation policies by 58% (absolute) on average, enabling robots to generalize to both new environment configurations and new tasks that are unseen in the robot demonstration data. See video results at https://giving-robots-a-hand.github.io/ .

  • 3 authors
·
Jul 12, 2023

SkillBlender: Towards Versatile Humanoid Whole-Body Loco-Manipulation via Skill Blending

Humanoid robots hold significant potential in accomplishing daily tasks across diverse environments thanks to their flexibility and human-like morphology. Recent works have made significant progress in humanoid whole-body control and loco-manipulation leveraging optimal control or reinforcement learning. However, these methods require tedious task-specific tuning for each task to achieve satisfactory behaviors, limiting their versatility and scalability to diverse tasks in daily scenarios. To that end, we introduce SkillBlender, a novel hierarchical reinforcement learning framework for versatile humanoid loco-manipulation. SkillBlender first pretrains goal-conditioned task-agnostic primitive skills, and then dynamically blends these skills to accomplish complex loco-manipulation tasks with minimal task-specific reward engineering. We also introduce SkillBench, a parallel, cross-embodiment, and diverse simulated benchmark containing three embodiments, four primitive skills, and eight challenging loco-manipulation tasks, accompanied by a set of scientific evaluation metrics balancing accuracy and feasibility. Extensive simulated experiments show that our method significantly outperforms all baselines, while naturally regularizing behaviors to avoid reward hacking, resulting in more accurate and feasible movements for diverse loco-manipulation tasks in our daily scenarios. Our code and benchmark will be open-sourced to the community to facilitate future research. Project page: https://usc-gvl.github.io/SkillBlender-web/.

  • 8 authors
·
Jun 10, 2025 2

Achieving Human Level Competitive Robot Table Tennis

Achieving human-level speed and performance on real world tasks is a north star for the robotics research community. This work takes a step towards that goal and presents the first learned robot agent that reaches amateur human-level performance in competitive table tennis. Table tennis is a physically demanding sport which requires human players to undergo years of training to achieve an advanced level of proficiency. In this paper, we contribute (1) a hierarchical and modular policy architecture consisting of (i) low level controllers with their detailed skill descriptors which model the agent's capabilities and help to bridge the sim-to-real gap and (ii) a high level controller that chooses the low level skills, (2) techniques for enabling zero-shot sim-to-real including an iterative approach to defining the task distribution that is grounded in the real-world and defines an automatic curriculum, and (3) real time adaptation to unseen opponents. Policy performance was assessed through 29 robot vs. human matches of which the robot won 45% (13/29). All humans were unseen players and their skill level varied from beginner to tournament level. Whilst the robot lost all matches vs. the most advanced players it won 100% matches vs. beginners and 55% matches vs. intermediate players, demonstrating solidly amateur human-level performance. Videos of the matches can be viewed at https://sites.google.com/view/competitive-robot-table-tennis

  • 27 authors
·
Aug 7, 2024 2

FastUMI-100K: Advancing Data-driven Robotic Manipulation with a Large-scale UMI-style Dataset

Data-driven robotic manipulation learning depends on large-scale, high-quality expert demonstration datasets. However, existing datasets, which primarily rely on human teleoperated robot collection, are limited in terms of scalability, trajectory smoothness, and applicability across different robotic embodiments in real-world environments. In this paper, we present FastUMI-100K, a large-scale UMI-style multimodal demonstration dataset, designed to overcome these limitations and meet the growing complexity of real-world manipulation tasks. Collected by FastUMI, a novel robotic system featuring a modular, hardware-decoupled mechanical design and an integrated lightweight tracking system, FastUMI-100K offers a more scalable, flexible, and adaptable solution to fulfill the diverse requirements of real-world robot demonstration data. Specifically, FastUMI-100K contains over 100K+ demonstration trajectories collected across representative household environments, covering 54 tasks and hundreds of object types. Our dataset integrates multimodal streams, including end-effector states, multi-view wrist-mounted fisheye images and textual annotations. Each trajectory has a length ranging from 120 to 500 frames. Experimental results demonstrate that FastUMI-100K enables high policy success rates across various baseline algorithms, confirming its robustness, adaptability, and real-world applicability for solving complex, dynamic manipulation challenges. The source code and dataset will be released in this link https://github.com/MrKeee/FastUMI-100K.

  • 17 authors
·
Oct 9, 2025

M2T2: Multi-Task Masked Transformer for Object-centric Pick and Place

With the advent of large language models and large-scale robotic datasets, there has been tremendous progress in high-level decision-making for object manipulation. These generic models are able to interpret complex tasks using language commands, but they often have difficulties generalizing to out-of-distribution objects due to the inability of low-level action primitives. In contrast, existing task-specific models excel in low-level manipulation of unknown objects, but only work for a single type of action. To bridge this gap, we present M2T2, a single model that supplies different types of low-level actions that work robustly on arbitrary objects in cluttered scenes. M2T2 is a transformer model which reasons about contact points and predicts valid gripper poses for different action modes given a raw point cloud of the scene. Trained on a large-scale synthetic dataset with 128K scenes, M2T2 achieves zero-shot sim2real transfer on the real robot, outperforming the baseline system with state-of-the-art task-specific models by about 19% in overall performance and 37.5% in challenging scenes where the object needs to be re-oriented for collision-free placement. M2T2 also achieves state-of-the-art results on a subset of language conditioned tasks in RLBench. Videos of robot experiments on unseen objects in both real world and simulation are available on our project website https://m2-t2.github.io.

  • 4 authors
·
Nov 1, 2023

A Hierarchical Framework for Humanoid Locomotion with Supernumerary Limbs

The integration of Supernumerary Limbs (SLs) on humanoid robots poses a significant stability challenge due to the dynamic perturbations they introduce. This thesis addresses this issue by designing a novel hierarchical control architecture to improve humanoid locomotion stability with SLs. The core of this framework is a decoupled strategy that combines learning-based locomotion with model-based balancing. The low-level component consists of a walking gait for a Unitree H1 humanoid through imitation learning and curriculum learning. The high-level component actively utilizes the SLs for dynamic balancing. The effectiveness of the system is evaluated in a physics-based simulation under three conditions: baseline gait for an unladen humanoid (baseline walking), walking with a static SL payload (static payload), and walking with the active dynamic balancing controller (dynamic balancing). Our evaluation shows that the dynamic balancing controller improves stability. Compared to the static payload condition, the balancing strategy yields a gait pattern closer to the baseline and decreases the Dynamic Time Warping (DTW) distance of the CoM trajectory by 47\%. The balancing controller also improves the re-stabilization within gait cycles and achieves a more coordinated anti-phase pattern of Ground Reaction Forces (GRF). The results demonstrate that a decoupled, hierarchical design can effectively mitigate the internal dynamic disturbances arising from the mass and movement of the SLs, enabling stable locomotion for humanoids equipped with functional limbs. Code and videos are available here: https://github.com/heyzbw/HuSLs.

BFM-Zero: A Promptable Behavioral Foundation Model for Humanoid Control Using Unsupervised Reinforcement Learning

Building Behavioral Foundation Models (BFMs) for humanoid robots has the potential to unify diverse control tasks under a single, promptable generalist policy. However, existing approaches are either exclusively deployed on simulated humanoid characters, or specialized to specific tasks such as tracking. We propose BFM-Zero, a framework that learns an effective shared latent representation that embeds motions, goals, and rewards into a common space, enabling a single policy to be prompted for multiple downstream tasks without retraining. This well-structured latent space in BFM-Zero enables versatile and robust whole-body skills on a Unitree G1 humanoid in the real world, via diverse inference methods, including zero-shot motion tracking, goal reaching, and reward optimization, and few-shot optimization-based adaptation. Unlike prior on-policy reinforcement learning (RL) frameworks, BFM-Zero builds upon recent advancements in unsupervised RL and Forward-Backward (FB) models, which offer an objective-centric, explainable, and smooth latent representation of whole-body motions. We further extend BFM-Zero with critical reward shaping, domain randomization, and history-dependent asymmetric learning to bridge the sim-to-real gap. Those key design choices are quantitatively ablated in simulation. A first-of-its-kind model, BFM-Zero establishes a step toward scalable, promptable behavioral foundation models for whole-body humanoid control.

  • 13 authors
·
Nov 6, 2025

RoboMIND: Benchmark on Multi-embodiment Intelligence Normative Data for Robot Manipulation

Developing robust and general-purpose robotic manipulation policies is a key goal in the field of robotics. To achieve effective generalization, it is essential to construct comprehensive datasets that encompass a large number of demonstration trajectories and diverse tasks. Unlike vision or language data that can be collected from the Internet, robotic datasets require detailed observations and manipulation actions, necessitating significant investment in hardware-software infrastructure and human labor. While existing works have focused on assembling various individual robot datasets, there remains a lack of a unified data collection standard and insufficient diversity in tasks, scenarios, and robot types. In this paper, we introduce RoboMIND (Multi-embodiment Intelligence Normative Data for Robot manipulation), featuring 55k real-world demonstration trajectories across 279 diverse tasks involving 61 different object classes. RoboMIND is collected through human teleoperation and encompasses comprehensive robotic-related information, including multi-view RGB-D images, proprioceptive robot state information, end effector details, and linguistic task descriptions. To ensure dataset consistency and reliability during policy learning, RoboMIND is built on a unified data collection platform and standardized protocol, covering four distinct robotic embodiments. We provide a thorough quantitative and qualitative analysis of RoboMIND across multiple dimensions, offering detailed insights into the diversity of our datasets. In our experiments, we conduct extensive real-world testing with four state-of-the-art imitation learning methods, demonstrating that training with RoboMIND data results in a high manipulation success rate and strong generalization. Our project is at https://x-humanoid-robomind.github.io/.

  • 36 authors
·
Dec 18, 2024

Evaluating Gemini Robotics Policies in a Veo World Simulator

Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.

deepmind Deepmind
·
Dec 11, 2025 2

GS-LTS: 3D Gaussian Splatting-Based Adaptive Modeling for Long-Term Service Robots

3D Gaussian Splatting (3DGS) has garnered significant attention in robotics for its explicit, high fidelity dense scene representation, demonstrating strong potential for robotic applications. However, 3DGS-based methods in robotics primarily focus on static scenes, with limited attention to the dynamic scene changes essential for long-term service robots. These robots demand sustained task execution and efficient scene updates-challenges current approaches fail to meet. To address these limitations, we propose GS-LTS (Gaussian Splatting for Long-Term Service), a 3DGS-based system enabling indoor robots to manage diverse tasks in dynamic environments over time. GS-LTS detects scene changes (e.g., object addition or removal) via single-image change detection, employs a rule-based policy to autonomously collect multi-view observations, and efficiently updates the scene representation through Gaussian editing. Additionally, we propose a simulation-based benchmark that automatically generates scene change data as compact configuration scripts, providing a standardized, user-friendly evaluation benchmark. Experimental results demonstrate GS-LTS's advantages in reconstruction, navigation, and superior scene updates-faster and higher quality than the image training baseline-advancing 3DGS for long-term robotic operations. Code and benchmark are available at: https://vipl-vsu.github.io/3DGS-LTS.

  • 5 authors
·
Mar 22, 2025

GigaWorld-0: World Models as Data Engine to Empower Embodied AI

World models are emerging as a foundational paradigm for scalable, data-efficient embodied AI. In this work, we present GigaWorld-0, a unified world model framework designed explicitly as a data engine for Vision-Language-Action (VLA) learning. GigaWorld-0 integrates two synergistic components: GigaWorld-0-Video, which leverages large-scale video generation to produce diverse, texture-rich, and temporally coherent embodied sequences under fine-grained control of appearance, camera viewpoint, and action semantics; and GigaWorld-0-3D, which combines 3D generative modeling, 3D Gaussian Splatting reconstruction, physically differentiable system identification, and executable motion planning to ensure geometric consistency and physical realism. Their joint optimization enables the scalable synthesis of embodied interaction data that is visually compelling, spatially coherent, physically plausible, and instruction-aligned. Training at scale is made feasible through our efficient GigaTrain framework, which exploits FP8-precision and sparse attention to drastically reduce memory and compute requirements. We conduct comprehensive evaluations showing that GigaWorld-0 generates high-quality, diverse, and controllable data across multiple dimensions. Critically, VLA model (e.g., GigaBrain-0) trained on GigaWorld-0-generated data achieve strong real-world performance, significantly improving generalization and task success on physical robots without any real-world interaction during training.

  • 25 authors
·
Nov 24, 2025 6

Robust Humanoid Walking on Compliant and Uneven Terrain with Deep Reinforcement Learning

For the deployment of legged robots in real-world environments, it is essential to develop robust locomotion control methods for challenging terrains that may exhibit unexpected deformability and irregularity. In this paper, we explore the application of sim-to-real deep reinforcement learning (RL) for the design of bipedal locomotion controllers for humanoid robots on compliant and uneven terrains. Our key contribution is to show that a simple training curriculum for exposing the RL agent to randomized terrains in simulation can achieve robust walking on a real humanoid robot using only proprioceptive feedback. We train an end-to-end bipedal locomotion policy using the proposed approach, and show extensive real-robot demonstration on the HRP-5P humanoid over several difficult terrains inside and outside the lab environment. Further, we argue that the robustness of a bipedal walking policy can be improved if the robot is allowed to exhibit aperiodic motion with variable stepping frequency. We propose a new control policy to enable modification of the observed clock signal, leading to adaptive gait frequencies depending on the terrain and command velocity. Through simulation experiments, we show the effectiveness of this policy specifically for walking over challenging terrains by controlling swing and stance durations. The code for training and evaluation is available online at https://github.com/rohanpsingh/LearningHumanoidWalking. Demo video is available at https://www.youtube.com/watch?v=ZgfNzGAkk2Q.

  • 5 authors
·
Apr 18, 2025

Automated Creation of Digital Cousins for Robust Policy Learning

Training robot policies in the real world can be unsafe, costly, and difficult to scale. Simulation serves as an inexpensive and potentially limitless source of training data, but suffers from the semantics and physics disparity between simulated and real-world environments. These discrepancies can be minimized by training in digital twins, which serve as virtual replicas of a real scene but are expensive to generate and cannot produce cross-domain generalization. To address these limitations, we propose the concept of digital cousins, a virtual asset or scene that, unlike a digital twin, does not explicitly model a real-world counterpart but still exhibits similar geometric and semantic affordances. As a result, digital cousins simultaneously reduce the cost of generating an analogous virtual environment while also facilitating better robustness during sim-to-real domain transfer by providing a distribution of similar training scenes. Leveraging digital cousins, we introduce a novel method for their automated creation, and propose a fully automated real-to-sim-to-real pipeline for generating fully interactive scenes and training robot policies that can be deployed zero-shot in the original scene. We find that digital cousin scenes that preserve geometric and semantic affordances can be produced automatically, and can be used to train policies that outperform policies trained on digital twins, achieving 90% vs. 25% success rates under zero-shot sim-to-real transfer. Additional details are available at https://digital-cousins.github.io/.

  • 8 authors
·
Oct 9, 2024

ReKep: Spatio-Temporal Reasoning of Relational Keypoint Constraints for Robotic Manipulation

Representing robotic manipulation tasks as constraints that associate the robot and the environment is a promising way to encode desired robot behaviors. However, it remains unclear how to formulate the constraints such that they are 1) versatile to diverse tasks, 2) free of manual labeling, and 3) optimizable by off-the-shelf solvers to produce robot actions in real-time. In this work, we introduce Relational Keypoint Constraints (ReKep), a visually-grounded representation for constraints in robotic manipulation. Specifically, ReKep is expressed as Python functions mapping a set of 3D keypoints in the environment to a numerical cost. We demonstrate that by representing a manipulation task as a sequence of Relational Keypoint Constraints, we can employ a hierarchical optimization procedure to solve for robot actions (represented by a sequence of end-effector poses in SE(3)) with a perception-action loop at a real-time frequency. Furthermore, in order to circumvent the need for manual specification of ReKep for each new task, we devise an automated procedure that leverages large vision models and vision-language models to produce ReKep from free-form language instructions and RGB-D observations. We present system implementations on a wheeled single-arm platform and a stationary dual-arm platform that can perform a large variety of manipulation tasks, featuring multi-stage, in-the-wild, bimanual, and reactive behaviors, all without task-specific data or environment models. Website at https://rekep-robot.github.io/.

  • 5 authors
·
Sep 3, 2024

RoboTwin 2.0: A Scalable Data Generator and Benchmark with Strong Domain Randomization for Robust Bimanual Robotic Manipulation

Simulation-based data synthesis has emerged as a powerful paradigm for enhancing real-world robotic manipulation. However, existing synthetic datasets remain insufficient for robust bimanual manipulation due to two challenges: (1) the lack of an efficient, scalable data generation method for novel tasks, and (2) oversimplified simulation environments that fail to capture real-world complexity. We present RoboTwin 2.0, a scalable simulation framework that enables automated, large-scale generation of diverse and realistic data, along with unified evaluation protocols for dual-arm manipulation. We first construct RoboTwin-OD, a large-scale object library comprising 731 instances across 147 categories, each annotated with semantic and manipulation-relevant labels. Building on this foundation, we develop an expert data synthesis pipeline that combines multimodal large language models (MLLMs) with simulation-in-the-loop refinement to generate task-level execution code automatically. To improve sim-to-real transfer, RoboTwin 2.0 incorporates structured domain randomization along five axes: clutter, lighting, background, tabletop height and language instructions, thereby enhancing data diversity and policy robustness. We instantiate this framework across 50 dual-arm tasks spanning five robot embodiments, and pre-collect over 100,000 domain-randomized expert trajectories. Empirical results show a 10.9% gain in code generation success and improved generalization to novel real-world scenarios. A VLA model fine-tuned on our dataset achieves a 367% relative improvement (42.0% vs. 9.0%) on unseen scene real-world tasks, while zero-shot models trained solely on our synthetic data achieve a 228% relative gain, highlighting strong generalization without real-world supervision. We release the data generator, benchmark, dataset, and code to support scalable research in robust bimanual manipulation.

  • 26 authors
·
Jun 22, 2025 1

Online Recognition of Incomplete Gesture Data to Interface Collaborative Robots

Online recognition of gestures is critical for intuitive human-robot interaction (HRI) and further push collaborative robotics into the market, making robots accessible to more people. The problem is that it is difficult to achieve accurate gesture recognition in real unstructured environments, often using distorted and incomplete multisensory data. This paper introduces an HRI framework to classify large vocabularies of interwoven static gestures (SGs) and dynamic gestures (DGs) captured with wearable sensors. DG features are obtained by applying data dimensionality reduction to raw data from sensors (resampling with cubic interpolation and principal component analysis). Experimental tests were conducted using the UC2017 hand gesture dataset with samples from eight different subjects. The classification models show an accuracy of 95.6% for a library of 24 SGs with a random forest and 99.3% for 10 DGs using artificial neural networks. These results compare equally or favorably with different commonly used classifiers. Long short-term memory deep networks achieved similar performance in online frame-by-frame classification using raw incomplete data, performing better in terms of accuracy than static models with specially crafted features, but worse in training and inference time. The recognized gestures are used to teleoperate a robot in a collaborative process that consists in preparing a breakfast meal.

  • 3 authors
·
Apr 13, 2023

MP1: MeanFlow Tames Policy Learning in 1-step for Robotic Manipulation

In robot manipulation, robot learning has become a prevailing approach. However, generative models within this field face a fundamental trade-off between the slow, iterative sampling of diffusion models and the architectural constraints of faster Flow-based methods, which often rely on explicit consistency losses. To address these limitations, we introduce MP1, which pairs 3D point-cloud inputs with the MeanFlow paradigm to generate action trajectories in one network function evaluation (1-NFE). By directly learning the interval-averaged velocity via the "MeanFlow Identity", our policy avoids any additional consistency constraints. This formulation eliminates numerical ODE-solver errors during inference, yielding more precise trajectories. MP1 further incorporates CFG for improved trajectory controllability while retaining 1-NFE inference without reintroducing structural constraints. Because subtle scene-context variations are critical for robot learning, especially in few-shot learning, we introduce a lightweight Dispersive Loss that repels state embeddings during training, boosting generalization without slowing inference. We validate our method on the Adroit and Meta-World benchmarks, as well as in real-world scenarios. Experimental results show MP1 achieves superior average task success rates, outperforming DP3 by 10.2% and FlowPolicy by 7.3%. Its average inference time is only 6.8 ms-19x faster than DP3 and nearly 2x faster than FlowPolicy. Our code is available at https://github.com/LogSSim/MP1.git.

  • 4 authors
·
Jul 14, 2025

Residual Off-Policy RL for Finetuning Behavior Cloning Policies

Recent advances in behavior cloning (BC) have enabled impressive visuomotor control policies. However, these approaches are limited by the quality of human demonstrations, the manual effort required for data collection, and the diminishing returns from increasing offline data. In comparison, reinforcement learning (RL) trains an agent through autonomous interaction with the environment and has shown remarkable success in various domains. Still, training RL policies directly on real-world robots remains challenging due to sample inefficiency, safety concerns, and the difficulty of learning from sparse rewards for long-horizon tasks, especially for high-degree-of-freedom (DoF) systems. We present a recipe that combines the benefits of BC and RL through a residual learning framework. Our approach leverages BC policies as black-box bases and learns lightweight per-step residual corrections via sample-efficient off-policy RL. We demonstrate that our method requires only sparse binary reward signals and can effectively improve manipulation policies on high-degree-of-freedom (DoF) systems in both simulation and the real world. In particular, we demonstrate, to the best of our knowledge, the first successful real-world RL training on a humanoid robot with dexterous hands. Our results demonstrate state-of-the-art performance in various vision-based tasks, pointing towards a practical pathway for deploying RL in the real world. Project website: https://residual-offpolicy-rl.github.io

  • 6 authors
·
Sep 23, 2025 2

BeyondMimic: From Motion Tracking to Versatile Humanoid Control via Guided Diffusion

The human-like form of humanoid robots positions them uniquely to achieve the agility and versatility in motor skills that humans possess. Learning from human demonstrations offers a scalable approach to acquiring these capabilities. However, prior works either produce unnatural motions or rely on motion-specific tuning to achieve satisfactory naturalness. Furthermore, these methods are often motion- or goal-specific, lacking the versatility to compose diverse skills, especially when solving unseen tasks. We present BeyondMimic, a framework that scales to diverse motions and carries the versatility to compose them seamlessly in tackling unseen downstream tasks. At heart, a compact motion-tracking formulation enables mastering a wide range of radically agile behaviors, including aerial cartwheels, spin-kicks, flip-kicks, and sprinting, with a single setup and shared hyperparameters, all while achieving state-of-the-art human-like performance. Moving beyond the mere imitation of existing motions, we propose a unified latent diffusion model that empowers versatile goal specification, seamless task switching, and dynamic composition of these agile behaviors. Leveraging classifier guidance, a diffusion-specific technique for test-time optimization toward novel objectives, our model extends its capability to solve downstream tasks never encountered during training, including motion inpainting, joystick teleoperation, and obstacle avoidance, and transfers these skills zero-shot to real hardware. This work opens new frontiers for humanoid robots by pushing the limits of scalable human-like motor skill acquisition from human motion and advancing seamless motion synthesis that achieves generalization and versatility beyond training setups.

  • 7 authors
·
Aug 11, 2025

Proactive Interaction Framework for Intelligent Social Receptionist Robots

Proactive human-robot interaction (HRI) allows the receptionist robots to actively greet people and offer services based on vision, which has been found to improve acceptability and customer satisfaction. Existing approaches are either based on multi-stage decision processes or based on end-to-end decision models. However, the rule-based approaches require sedulous expert efforts and only handle minimal pre-defined scenarios. On the other hand, existing works with end-to-end models are limited to very general greetings or few behavior patterns (typically less than 10). To address those challenges, we propose a new end-to-end framework, the TransFormer with Visual Tokens for Human-Robot Interaction (TFVT-HRI). The proposed framework extracts visual tokens of relative objects from an RGB camera first. To ensure the correct interpretation of the scenario, a transformer decision model is then employed to process the visual tokens, which is augmented with the temporal and spatial information. It predicts the appropriate action to take in each scenario and identifies the right target. Our data is collected from an in-service receptionist robot in an office building, which is then annotated by experts for appropriate proactive behavior. The action set includes 1000+ diverse patterns by combining language, emoji expression, and body motions. We compare our model with other SOTA end-to-end models on both offline test sets and online user experiments in realistic office building environments to validate this framework. It is demonstrated that the decision model achieves SOTA performance in action triggering and selection, resulting in more humanness and intelligence when compared with the previous reactive reception policies.

  • 7 authors
·
Dec 8, 2020

Manipulation as in Simulation: Enabling Accurate Geometry Perception in Robots

Modern robotic manipulation primarily relies on visual observations in a 2D color space for skill learning but suffers from poor generalization. In contrast, humans, living in a 3D world, depend more on physical properties-such as distance, size, and shape-than on texture when interacting with objects. Since such 3D geometric information can be acquired from widely available depth cameras, it appears feasible to endow robots with similar perceptual capabilities. Our pilot study found that using depth cameras for manipulation is challenging, primarily due to their limited accuracy and susceptibility to various types of noise. In this work, we propose Camera Depth Models (CDMs) as a simple plugin on daily-use depth cameras, which take RGB images and raw depth signals as input and output denoised, accurate metric depth. To achieve this, we develop a neural data engine that generates high-quality paired data from simulation by modeling a depth camera's noise pattern. Our results show that CDMs achieve nearly simulation-level accuracy in depth prediction, effectively bridging the sim-to-real gap for manipulation tasks. Notably, our experiments demonstrate, for the first time, that a policy trained on raw simulated depth, without the need for adding noise or real-world fine-tuning, generalizes seamlessly to real-world robots on two challenging long-horizon tasks involving articulated, reflective, and slender objects, with little to no performance degradation. We hope our findings will inspire future research in utilizing simulation data and 3D information in general robot policies.

ByteDance-Seed ByteDance Seed
·
Sep 2, 2025 2

Real2Render2Real: Scaling Robot Data Without Dynamics Simulation or Robot Hardware

Scaling robot learning requires vast and diverse datasets. Yet the prevailing data collection paradigm-human teleoperation-remains costly and constrained by manual effort and physical robot access. We introduce Real2Render2Real (R2R2R), a novel approach for generating robot training data without relying on object dynamics simulation or teleoperation of robot hardware. The input is a smartphone-captured scan of one or more objects and a single video of a human demonstration. R2R2R renders thousands of high visual fidelity robot-agnostic demonstrations by reconstructing detailed 3D object geometry and appearance, and tracking 6-DoF object motion. R2R2R uses 3D Gaussian Splatting (3DGS) to enable flexible asset generation and trajectory synthesis for both rigid and articulated objects, converting these representations to meshes to maintain compatibility with scalable rendering engines like IsaacLab but with collision modeling off. Robot demonstration data generated by R2R2R integrates directly with models that operate on robot proprioceptive states and image observations, such as vision-language-action models (VLA) and imitation learning policies. Physical experiments suggest that models trained on R2R2R data from a single human demonstration can match the performance of models trained on 150 human teleoperation demonstrations. Project page: https://real2render2real.com

  • 8 authors
·
May 14, 2025 2

Dojo: A Differentiable Physics Engine for Robotics

We present Dojo, a differentiable physics engine for robotics that prioritizes stable simulation, accurate contact physics, and differentiability with respect to states, actions, and system parameters. Dojo models hard contact and friction with a nonlinear complementarity problem with second-order cone constraints. We introduce a custom primal-dual interior-point method to solve the second order cone program for stable forward simulation over a broad range of sample rates. We obtain smooth gradient approximations with this solver through the implicit function theorem, giving gradients that are useful for downstream trajectory optimization, policy optimization, and system identification applications. Specifically, we propose to use the central path parameter threshold in the interior point solver as a user-tunable design parameter. A high value gives a smooth approximation to contact dynamics with smooth gradients for optimization and learning, while a low value gives precise simulation rollouts with hard contact. We demonstrate Dojo's differentiability in trajectory optimization, policy learning, and system identification examples. We also benchmark Dojo against MuJoCo, PyBullet, Drake, and Brax on a variety of robot models, and study the stability and simulation quality over a range of sample frequencies and accuracy tolerances. Finally, we evaluate the sim-to-real gap in hardware experiments with a Ufactory xArm 6 robot. Dojo is an open source project implemented in Julia with Python bindings, with code available at https://github.com/dojo-sim/Dojo.jl.

  • 8 authors
·
Mar 1, 2022