File size: 9,433 Bytes
308bdff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
"""
Position Evaluation Module
Combines neural network evaluation with classical heuristics
Research References:
- AlphaZero (Silver et al., 2017) - Pure neural evaluation
- Stockfish NNUE (2020) - Hybrid neural-classical approach
- Leela Chess Zero - MCTS with neural evaluation
"""
import onnxruntime as ort
import numpy as np
import chess
import logging
from pathlib import Path
from typing import Dict, Optional
logger = logging.getLogger(__name__)
class NeuralEvaluator:
"""
Synapse-Base neural network evaluator
119-channel input, hybrid CNN-Transformer architecture
"""
# Piece values for material balance (Stockfish values)
PIECE_VALUES = {
chess.PAWN: 100,
chess.KNIGHT: 320,
chess.BISHOP: 330,
chess.ROOK: 500,
chess.QUEEN: 900,
chess.KING: 0
}
# Piece-Square Tables (simplified Stockfish PST)
PST_PAWN = np.array([
[0, 0, 0, 0, 0, 0, 0, 0],
[50, 50, 50, 50, 50, 50, 50, 50],
[10, 10, 20, 30, 30, 20, 10, 10],
[5, 5, 10, 25, 25, 10, 5, 5],
[0, 0, 0, 20, 20, 0, 0, 0],
[5, -5,-10, 0, 0,-10, -5, 5],
[5, 10, 10,-20,-20, 10, 10, 5],
[0, 0, 0, 0, 0, 0, 0, 0]
], dtype=np.float32)
PST_KNIGHT = np.array([
[-50,-40,-30,-30,-30,-30,-40,-50],
[-40,-20, 0, 0, 0, 0,-20,-40],
[-30, 0, 10, 15, 15, 10, 0,-30],
[-30, 5, 15, 20, 20, 15, 5,-30],
[-30, 0, 15, 20, 20, 15, 0,-30],
[-30, 5, 10, 15, 15, 10, 5,-30],
[-40,-20, 0, 5, 5, 0,-20,-40],
[-50,-40,-30,-30,-30,-30,-40,-50]
], dtype=np.float32)
PST_KING_MG = np.array([
[-30,-40,-40,-50,-50,-40,-40,-30],
[-30,-40,-40,-50,-50,-40,-40,-30],
[-30,-40,-40,-50,-50,-40,-40,-30],
[-30,-40,-40,-50,-50,-40,-40,-30],
[-20,-30,-30,-40,-40,-30,-30,-20],
[-10,-20,-20,-20,-20,-20,-20,-10],
[ 20, 20, 0, 0, 0, 0, 20, 20],
[ 20, 30, 10, 0, 0, 10, 30, 20]
], dtype=np.float32)
def __init__(self, model_path: str, num_threads: int = 2):
"""Initialize neural evaluator"""
self.model_path = Path(model_path)
if not self.model_path.exists():
raise FileNotFoundError(f"Model not found: {model_path}")
# ONNX Runtime session (CPU optimized)
sess_options = ort.SessionOptions()
sess_options.intra_op_num_threads = num_threads
sess_options.inter_op_num_threads = num_threads
sess_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
logger.info(f"Loading Synapse-Base model from {model_path}...")
self.session = ort.InferenceSession(
str(self.model_path),
sess_options=sess_options,
providers=['CPUExecutionProvider']
)
self.input_name = self.session.get_inputs()[0].name
self.output_names = [output.name for output in self.session.get_outputs()]
logger.info(f"✅ Model loaded: {self.input_name} -> {self.output_names}")
def _build_119_channel_tensor(self, board: chess.Board) -> np.ndarray:
"""
Convert board to 119-channel tensor
Based on Synapse-Base input specification
"""
tensor = np.zeros((1, 119, 8, 8), dtype=np.float32)
# === CHANNELS 0-11: Piece Positions ===
piece_map = board.piece_map()
piece_to_channel = {
chess.PAWN: 0, chess.KNIGHT: 1, chess.BISHOP: 2,
chess.ROOK: 3, chess.QUEEN: 4, chess.KING: 5
}
for square, piece in piece_map.items():
rank, file = divmod(square, 8)
channel = piece_to_channel[piece.piece_type]
if piece.color == chess.BLACK:
channel += 6
tensor[0, channel, rank, file] = 1.0
# === CHANNELS 12-26: Metadata ===
tensor[0, 12, :, :] = float(board.turn == chess.WHITE)
tensor[0, 13, :, :] = float(board.has_kingside_castling_rights(chess.WHITE))
tensor[0, 14, :, :] = float(board.has_queenside_castling_rights(chess.WHITE))
tensor[0, 15, :, :] = float(board.has_kingside_castling_rights(chess.BLACK))
tensor[0, 16, :, :] = float(board.has_queenside_castling_rights(chess.BLACK))
if board.ep_square is not None:
ep_rank, ep_file = divmod(board.ep_square, 8)
tensor[0, 17, ep_rank, ep_file] = 1.0
tensor[0, 18, :, :] = min(board.halfmove_clock / 100.0, 1.0)
tensor[0, 19, :, :] = min(board.fullmove_number / 100.0, 1.0)
tensor[0, 20, :, :] = float(board.is_check() and board.turn == chess.WHITE)
tensor[0, 21, :, :] = float(board.is_check() and board.turn == chess.BLACK)
# Material counts
for i, piece_type in enumerate([chess.PAWN, chess.KNIGHT, chess.BISHOP, chess.ROOK, chess.QUEEN]):
white_count = len(board.pieces(piece_type, chess.WHITE))
black_count = len(board.pieces(piece_type, chess.BLACK))
max_count = 8 if piece_type == chess.PAWN else 2
tensor[0, 22 + i*2, :, :] = white_count / max_count
tensor[0, 23 + i*2, :, :] = black_count / max_count
# === CHANNELS 27-50: Attack Maps ===
for square in chess.SQUARES:
rank, file = divmod(square, 8)
if board.is_attacked_by(chess.WHITE, square):
tensor[0, 27, rank, file] = 1.0
if board.is_attacked_by(chess.BLACK, square):
tensor[0, 28, rank, file] = 1.0
# Mobility (number of legal moves)
white_mobility = len(list(board.legal_moves)) if board.turn == chess.WHITE else 0
black_mobility = len(list(board.legal_moves)) if board.turn == chess.BLACK else 0
tensor[0, 29, :, :] = min(white_mobility / 50.0, 1.0)
tensor[0, 30, :, :] = min(black_mobility / 50.0, 1.0)
# === CHANNELS 51-66: Coordinate Encoding ===
for rank in range(8):
tensor[0, 51 + rank, rank, :] = 1.0
for file in range(8):
tensor[0, 59 + file, :, file] = 1.0
# === CHANNELS 67-118: Positional Features ===
# Center control
center = [chess.D4, chess.D5, chess.E4, chess.E5]
for sq in center:
r, f = divmod(sq, 8)
tensor[0, 67, r, f] = 0.5
# King safety zones
for color, offset in [(chess.WHITE, 68), (chess.BLACK, 69)]:
king_sq = board.king(color)
if king_sq is not None:
kr, kf = divmod(king_sq, 8)
for dr in [-1, 0, 1]:
for df in [-1, 0, 1]:
r, f = kr + dr, kf + df
if 0 <= r < 8 and 0 <= f < 8:
tensor[0, offset, r, f] = 1.0
# Piece-square table values
for square, piece in piece_map.items():
rank, file = divmod(square, 8)
if piece.piece_type == chess.PAWN:
pst_value = self.PST_PAWN[rank, file] / 50.0
tensor[0, 70, rank, file] = pst_value if piece.color == chess.WHITE else -pst_value
elif piece.piece_type == chess.KNIGHT:
pst_value = self.PST_KNIGHT[rank, file] / 30.0
tensor[0, 71, rank, file] = pst_value if piece.color == chess.WHITE else -pst_value
return tensor
def evaluate_neural(self, board: chess.Board) -> float:
"""
Neural network evaluation
Returns score from white's perspective
"""
input_tensor = self._build_119_channel_tensor(board)
outputs = self.session.run(self.output_names, {self.input_name: input_tensor})
# Value head output (tanh normalized to [-1, 1])
raw_eval = float(outputs[0][0][0])
# Convert to centipawns (multiply by 4 for scaling)
return raw_eval * 400.0
def evaluate_material(self, board: chess.Board) -> int:
"""Classical material evaluation"""
material = 0
for piece_type in [chess.PAWN, chess.KNIGHT, chess.BISHOP, chess.ROOK, chess.QUEEN]:
material += len(board.pieces(piece_type, chess.WHITE)) * self.PIECE_VALUES[piece_type]
material -= len(board.pieces(piece_type, chess.BLACK)) * self.PIECE_VALUES[piece_type]
return material
def evaluate_hybrid(self, board: chess.Board) -> float:
"""
Hybrid evaluation combining neural and classical
Research: Stockfish NNUE approach
"""
# Neural evaluation (primary)
neural_eval = self.evaluate_neural(board)
# Classical material balance (safety check)
material_eval = self.evaluate_material(board)
# Blend: 95% neural, 5% material (for stability)
hybrid_eval = 0.95 * neural_eval + 0.05 * material_eval
# Perspective flip for black
if board.turn == chess.BLACK:
hybrid_eval = -hybrid_eval
return hybrid_eval
def get_model_size_mb(self) -> float:
"""Get model size in MB"""
return self.model_path.stat().st_size / (1024 * 1024) |