|
|
import gradio as gr |
|
|
import numpy as np |
|
|
import random |
|
|
import torch |
|
|
import spaces |
|
|
|
|
|
from PIL import Image |
|
|
from diffusers import FlowMatchEulerDiscreteScheduler, QwenImageEditPlusPipeline |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from huggingface_hub import InferenceClient |
|
|
import math |
|
|
|
|
|
import os |
|
|
import base64 |
|
|
from io import BytesIO |
|
|
import json |
|
|
|
|
|
SYSTEM_PROMPT = ''' |
|
|
# Edit Instruction Rewriter |
|
|
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited. |
|
|
|
|
|
Please strictly follow the rewriting rules below: |
|
|
|
|
|
## 1. General Principles |
|
|
- Keep the rewritten prompt **concise and comprehensive**. Avoid overly long sentences and unnecessary descriptive language. |
|
|
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary. |
|
|
- Keep the main part of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility. |
|
|
- All added objects or modifications must align with the logic and style of the scene in the input images. |
|
|
- If multiple sub-images are to be generated, describe the content of each sub-image individually. |
|
|
|
|
|
## 2. Task-Type Handling Rules |
|
|
|
|
|
### 1. Add, Delete, Replace Tasks |
|
|
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar. |
|
|
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example: |
|
|
> Original: "Add an animal" |
|
|
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera" |
|
|
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid. |
|
|
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X. |
|
|
|
|
|
### 2. Text Editing Tasks |
|
|
- All text content must be enclosed in English double quotes `" "`. Keep the original language of the text, and keep the capitalization. |
|
|
- Both adding new text and replacing existing text are text replacement tasks, For example: |
|
|
- Replace "xx" to "yy" |
|
|
- Replace the mask / bounding box to "yy" |
|
|
- Replace the visual object to "yy" |
|
|
- Specify text position, color, and layout only if user has required. |
|
|
- If font is specified, keep the original language of the font. |
|
|
|
|
|
### 3. Human Editing Tasks |
|
|
- Make the smallest changes to the given user's prompt. |
|
|
- If changes to background, action, expression, camera shot, or ambient lighting are required, please list each modification individually. |
|
|
- **Edits to makeup or facial features / expression must be subtle, not exaggerated, and must preserve the subject's identity consistency.** |
|
|
> Original: "Add eyebrows to the face" |
|
|
> Rewritten: "Slightly thicken the person's eyebrows with little change, look natural." |
|
|
|
|
|
### 4. Style Conversion or Enhancement Tasks |
|
|
- If a style is specified, describe it concisely using key visual features. For example: |
|
|
> Original: "Disco style" |
|
|
> Rewritten: "1970s disco style: flashing lights, disco ball, mirrored walls, vibrant colors" |
|
|
- For style reference, analyze the original image and extract key characteristics (color, composition, texture, lighting, artistic style, etc.), integrating them into the instruction. |
|
|
- **Colorization tasks (including old photo restoration) must use the fixed template:** |
|
|
"Restore and colorize the old photo." |
|
|
- Clearly specify the object to be modified. For example: |
|
|
> Original: Modify the subject in Picture 1 to match the style of Picture 2. |
|
|
> Rewritten: Change the girl in Picture 1 to the ink-wash style of Picture 2 — rendered in black-and-white watercolor with soft color transitions. |
|
|
|
|
|
### 5. Material Replacement |
|
|
- Clearly specify the object and the material. For example: "Change the material of the apple to papercut style." |
|
|
- For text material replacement, use the fixed template: |
|
|
"Change the material of text "xxxx" to laser style" |
|
|
|
|
|
### 6. Logo/Pattern Editing |
|
|
- Material replacement should preserve the original shape and structure as much as possible. For example: |
|
|
> Original: "Convert to sapphire material" |
|
|
> Rewritten: "Convert the main subject in the image to sapphire material, preserving similar shape and structure" |
|
|
- When migrating logos/patterns to new scenes, ensure shape and structure consistency. For example: |
|
|
> Original: "Migrate the logo in the image to a new scene" |
|
|
> Rewritten: "Migrate the logo in the image to a new scene, preserving similar shape and structure" |
|
|
|
|
|
### 7. Multi-Image Tasks |
|
|
- Rewritten prompts must clearly point out which image's element is being modified. For example: |
|
|
> Original: "Replace the subject of picture 1 with the subject of picture 2" |
|
|
> Rewritten: "Replace the girl of picture 1 with the boy of picture 2, keeping picture 2's background unchanged" |
|
|
- For stylization tasks, describe the reference image's style in the rewritten prompt, while preserving the visual content of the source image. |
|
|
|
|
|
## 3. Rationale and Logic Check |
|
|
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" requires logical correction. |
|
|
- Supplement missing critical information: e.g., if position is unspecified, choose a reasonable area based on composition (near subject, blank space, center/edge, etc.). |
|
|
|
|
|
# Output Format Example |
|
|
```json |
|
|
{ |
|
|
"Rewritten": "..." |
|
|
} |
|
|
''' |
|
|
|
|
|
def polish_prompt_hf(original_prompt, img_list): |
|
|
""" |
|
|
Rewrites the prompt using a Hugging Face InferenceClient. |
|
|
Supports multiple images via img_list. |
|
|
""" |
|
|
|
|
|
api_key = os.environ.get("inference_providers") |
|
|
if not api_key: |
|
|
print("Warning: HF_TOKEN not set. Falling back to original prompt.") |
|
|
return original_prompt |
|
|
prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {original_prompt}\n\nRewritten Prompt:" |
|
|
system_prompt = "you are a helpful assistant, you should provide useful answers to users." |
|
|
try: |
|
|
|
|
|
client = InferenceClient( |
|
|
provider="nebius", |
|
|
api_key=api_key, |
|
|
) |
|
|
|
|
|
|
|
|
image_urls = [] |
|
|
if img_list is not None: |
|
|
|
|
|
if not isinstance(img_list, list): |
|
|
img_list = [img_list] |
|
|
|
|
|
for img in img_list: |
|
|
image_url = None |
|
|
|
|
|
if hasattr(img, 'save'): |
|
|
buffered = BytesIO() |
|
|
img.save(buffered, format="PNG") |
|
|
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') |
|
|
image_url = f"data:image/png;base64,{img_base64}" |
|
|
|
|
|
elif isinstance(img, str): |
|
|
with open(img, "rb") as image_file: |
|
|
img_base64 = base64.b64encode(image_file.read()).decode('utf-8') |
|
|
image_url = f"data:image/png;base64,{img_base64}" |
|
|
else: |
|
|
print(f"Warning: Unexpected image type: {type(img)}, skipping...") |
|
|
continue |
|
|
|
|
|
if image_url: |
|
|
image_urls.append(image_url) |
|
|
|
|
|
|
|
|
content = [ |
|
|
{ |
|
|
"type": "text", |
|
|
"text": prompt |
|
|
} |
|
|
] |
|
|
|
|
|
|
|
|
for image_url in image_urls: |
|
|
content.append({ |
|
|
"type": "image_url", |
|
|
"image_url": { |
|
|
"url": image_url |
|
|
} |
|
|
}) |
|
|
|
|
|
|
|
|
messages = [ |
|
|
{"role": "system", "content": system_prompt}, |
|
|
{ |
|
|
"role": "user", |
|
|
"content": content |
|
|
} |
|
|
] |
|
|
|
|
|
|
|
|
completion = client.chat.completions.create( |
|
|
model="Qwen/Qwen2.5-VL-72B-Instruct", |
|
|
messages=messages, |
|
|
) |
|
|
|
|
|
|
|
|
result = completion.choices[0].message.content |
|
|
|
|
|
|
|
|
if '"Rewritten"' in result: |
|
|
try: |
|
|
|
|
|
result = result.replace('```json', '').replace('```', '') |
|
|
result_json = json.loads(result) |
|
|
polished_prompt = result_json.get('Rewritten', result) |
|
|
except: |
|
|
polished_prompt = result |
|
|
else: |
|
|
polished_prompt = result |
|
|
|
|
|
polished_prompt = polished_prompt.strip().replace("\n", " ") |
|
|
return polished_prompt |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Error during API call to Hugging Face: {e}") |
|
|
|
|
|
return original_prompt |
|
|
|
|
|
|
|
|
|
|
|
def encode_image(pil_image): |
|
|
import io |
|
|
buffered = io.BytesIO() |
|
|
pil_image.save(buffered, format="PNG") |
|
|
return base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
|
|
|
|
|
|
|
dtype = torch.bfloat16 |
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
|
|
|
scheduler_config = { |
|
|
"base_image_seq_len": 256, |
|
|
"base_shift": math.log(3), |
|
|
"invert_sigmas": False, |
|
|
"max_image_seq_len": 8192, |
|
|
"max_shift": math.log(3), |
|
|
"num_train_timesteps": 1000, |
|
|
"shift": 1.0, |
|
|
"shift_terminal": None, |
|
|
"stochastic_sampling": False, |
|
|
"time_shift_type": "exponential", |
|
|
"use_beta_sigmas": False, |
|
|
"use_dynamic_shifting": True, |
|
|
"use_exponential_sigmas": False, |
|
|
"use_karras_sigmas": False, |
|
|
} |
|
|
|
|
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) |
|
|
|
|
|
|
|
|
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2511", |
|
|
scheduler=scheduler, |
|
|
torch_dtype=dtype).to(device) |
|
|
pipe.load_lora_weights( |
|
|
"lightx2v/Qwen-Image-Edit-2511-Lightning", |
|
|
weight_name="Qwen-Image-Edit-2511-Lightning-4steps-V1.0-bf16.safetensors",adapter_name="fast" |
|
|
) |
|
|
pipe.load_lora_weights( |
|
|
"lilylilith/AnyPose", |
|
|
weight_name="2511-AnyPose-base-000006250.safetensors",adapter_name="base" |
|
|
) |
|
|
pipe.load_lora_weights( |
|
|
"lilylilith/AnyPose", |
|
|
weight_name="2511-AnyPose-helper-00006000.safetensors",adapter_name="helper" |
|
|
) |
|
|
pipe.set_adapters(["fast", "base", "helper"], adapter_weights=[1., 0.7, 0.7]) |
|
|
pipe.fuse_lora(adapter_names=["fast", "base", "helper"], lora_scale=1) |
|
|
pipe.unload_lora_weights() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
DEFAULT_LORA_PROMPT = """ |
|
|
Make the person in image 1 do the exact same pose of the person in image 2. |
|
|
Changing the style and background of the image of the person in image 1 is undesirable, so don't do it. |
|
|
The new pose should be pixel accurate to the pose we are trying to copy. |
|
|
The position of the arms and head and legs should be the same as the pose we are trying to copy. |
|
|
Change the field of view and angle to match exactly image 2. Head tilt and eye gaze pose should match the person in image 2. |
|
|
Remove the background of image 2, and replace it with the background of image 1. |
|
|
Don't change the identity of the person in image 1, keep their appearance the same, it is undesirable to change their facical features or hair style. don't do it. |
|
|
""" |
|
|
|
|
|
def use_output_as_input(output_images): |
|
|
"""Convert output images to input format for the reference image""" |
|
|
if output_images is None or len(output_images) == 0: |
|
|
return None |
|
|
return output_images[0] |
|
|
|
|
|
|
|
|
@spaces.GPU() |
|
|
def infer( |
|
|
reference_image, |
|
|
pose_image, |
|
|
prompt=DEFAULT_LORA_PROMPT, |
|
|
seed=42, |
|
|
randomize_seed=False, |
|
|
true_guidance_scale=1.0, |
|
|
num_inference_steps=4, |
|
|
height=None, |
|
|
width=None, |
|
|
rewrite_prompt=False, |
|
|
num_images_per_prompt=1, |
|
|
progress=gr.Progress(track_tqdm=True), |
|
|
): |
|
|
""" |
|
|
Run image-editing inference using the Qwen-Image-Edit pipeline. |
|
|
|
|
|
Parameters: |
|
|
reference_image: Reference image (PIL or path-based). |
|
|
pose_image: Pose image (PIL or path-based). |
|
|
prompt (str): Editing instruction (may be rewritten by LLM if enabled). |
|
|
seed (int): Random seed for reproducibility. |
|
|
randomize_seed (bool): If True, overrides seed with a random value. |
|
|
true_guidance_scale (float): CFG scale used by Qwen-Image. |
|
|
num_inference_steps (int): Number of diffusion steps. |
|
|
height (int | None): Optional output height override. |
|
|
width (int | None): Optional output width override. |
|
|
rewrite_prompt (bool): Whether to rewrite the prompt using Qwen-2.5-VL. |
|
|
num_images_per_prompt (int): Number of images to generate. |
|
|
progress: Gradio progress callback. |
|
|
|
|
|
Returns: |
|
|
tuple: (generated_images, seed_used, UI_visibility_update) |
|
|
""" |
|
|
|
|
|
|
|
|
negative_prompt = " " |
|
|
|
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
|
|
|
|
|
pil_images = [] |
|
|
|
|
|
|
|
|
if reference_image is not None: |
|
|
try: |
|
|
if isinstance(reference_image, Image.Image): |
|
|
pil_images.append(reference_image.convert("RGB")) |
|
|
elif isinstance(reference_image, str): |
|
|
pil_images.append(Image.open(reference_image).convert("RGB")) |
|
|
elif hasattr(reference_image, "name"): |
|
|
pil_images.append(Image.open(reference_image.name).convert("RGB")) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
if pose_image is not None: |
|
|
try: |
|
|
if isinstance(pose_image, Image.Image): |
|
|
pil_images.append(pose_image.convert("RGB")) |
|
|
elif isinstance(pose_image, str): |
|
|
pil_images.append(Image.open(pose_image).convert("RGB")) |
|
|
elif hasattr(pose_image, "name"): |
|
|
pil_images.append(Image.open(pose_image.name).convert("RGB")) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
if height==256 and width==256: |
|
|
height, width = None, None |
|
|
print(f"Calling pipeline with prompt: '{prompt}'") |
|
|
print(f"Negative Prompt: '{negative_prompt}'") |
|
|
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}") |
|
|
if rewrite_prompt and len(pil_images) > 0: |
|
|
prompt = polish_prompt_hf(prompt, pil_images) |
|
|
print(f"Rewritten Prompt: {prompt}") |
|
|
|
|
|
|
|
|
|
|
|
image = pipe( |
|
|
image=pil_images if len(pil_images) > 0 else None, |
|
|
prompt=prompt, |
|
|
height=height, |
|
|
width=width, |
|
|
negative_prompt=negative_prompt, |
|
|
num_inference_steps=num_inference_steps, |
|
|
generator=generator, |
|
|
true_cfg_scale=true_guidance_scale, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
).images |
|
|
|
|
|
|
|
|
return image, seed, gr.update(visible=False) |
|
|
|
|
|
|
|
|
|
|
|
def infer_for_examples( |
|
|
reference_image, |
|
|
pose_image, |
|
|
prompt=DEFAULT_LORA_PROMPT, |
|
|
seed=42, |
|
|
randomize_seed=False, |
|
|
true_guidance_scale=1.0, |
|
|
num_inference_steps=4, |
|
|
height=None, |
|
|
width=None, |
|
|
rewrite_prompt=False, |
|
|
num_images_per_prompt=1, |
|
|
progress=gr.Progress(track_tqdm=True), |
|
|
): |
|
|
"""Wrapper for examples that only returns image and seed.""" |
|
|
image, seed, _ = infer( |
|
|
reference_image, pose_image, prompt, seed, randomize_seed, |
|
|
true_guidance_scale, num_inference_steps, height, width, |
|
|
rewrite_prompt, num_images_per_prompt, progress |
|
|
) |
|
|
return image, seed |
|
|
|
|
|
|
|
|
examples = [] |
|
|
|
|
|
css = """ |
|
|
#col-container { |
|
|
margin: 0 auto; |
|
|
max-width: 1024px; |
|
|
} |
|
|
#logo-title { |
|
|
text-align: center; |
|
|
} |
|
|
#logo-title img { |
|
|
width: 400px; |
|
|
} |
|
|
#edit_text{margin-top: -62px !important} |
|
|
""" |
|
|
|
|
|
with gr.Blocks(css=css, theme=gr.themes.Citrus()) as demo: |
|
|
with gr.Column(elem_id="col-container"): |
|
|
gr.HTML(""" |
|
|
<div id="logo-title"> |
|
|
<h1 style="color: #5b47d1;">Qwen Edit Any Pose 🕺 </h1> |
|
|
<h2 style="font-style: italic;color: #5b47d1;margin-top: -10px !important;">Fast 4-step pose transfer with Qwen Edit 2511 & AnyPose LoRA</h2> |
|
|
</div> |
|
|
""") |
|
|
gr.Markdown(""" |
|
|
Transfer any pose from a reference image to your subject using [Qwen-Image-Edit-2511](https://huggingface.co/Qwen/Qwen-Image-Edit-2511) with [lilylilith/AnyPose LoRA](https://huggingface.co/lilylilith/AnyPose) and [lightx2v Lightning LoRA](https://huggingface.co/lightx2v/Qwen-Image-Edit-2511-Lightning) for fast inference. |
|
|
[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. |
|
|
""") |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
with gr.Row(): |
|
|
reference_image = gr.Image(label="Reference Image", type="pil", interactive=True) |
|
|
pose_image = gr.Image(label="Pose Image", type="pil", interactive=True) |
|
|
|
|
|
with gr.Row(): |
|
|
prompt = gr.Text( |
|
|
label="Prompt", |
|
|
value=DEFAULT_LORA_PROMPT, |
|
|
show_label=False, |
|
|
visible=False |
|
|
) |
|
|
run_button = gr.Button("Edit Pose", variant="primary") |
|
|
|
|
|
with gr.Column(scale=1): |
|
|
result = gr.Gallery(label="Result", show_label=False, type="pil", interactive=False) |
|
|
|
|
|
use_output_btn = gr.Button("↗️ Use as input", variant="secondary", size="sm", visible=False) |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
|
|
|
|
|
seed = gr.Slider( |
|
|
label="Seed", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=0, |
|
|
) |
|
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
|
|
with gr.Row(): |
|
|
|
|
|
true_guidance_scale = gr.Slider( |
|
|
label="True guidance scale", |
|
|
minimum=1.0, |
|
|
maximum=10.0, |
|
|
step=0.1, |
|
|
value=1.0 |
|
|
) |
|
|
|
|
|
num_inference_steps = gr.Slider( |
|
|
label="Number of inference steps", |
|
|
minimum=1, |
|
|
maximum=40, |
|
|
step=1, |
|
|
value=4, |
|
|
) |
|
|
|
|
|
height = gr.Slider( |
|
|
label="Height", |
|
|
minimum=256, |
|
|
maximum=2048, |
|
|
step=8, |
|
|
value=None, |
|
|
) |
|
|
|
|
|
width = gr.Slider( |
|
|
label="Width", |
|
|
minimum=256, |
|
|
maximum=2048, |
|
|
step=8, |
|
|
value=None, |
|
|
) |
|
|
|
|
|
|
|
|
rewrite_prompt = gr.Checkbox(label="Rewrite prompt", value=False, visible=False) |
|
|
|
|
|
gr.Examples( |
|
|
examples=[ |
|
|
["s-l1200.jpg","High-Lunge_Andrew-Clark.jpg"], |
|
|
["009.jpg","wednesday.png"], |
|
|
], |
|
|
inputs=[ |
|
|
reference_image, |
|
|
pose_image, |
|
|
], |
|
|
outputs=[result, seed], |
|
|
fn=infer_for_examples, |
|
|
cache_examples=True, |
|
|
cache_mode="lazy", |
|
|
) |
|
|
gr.on( |
|
|
triggers=[run_button.click, prompt.submit], |
|
|
fn=infer, |
|
|
inputs=[ |
|
|
reference_image, |
|
|
pose_image, |
|
|
prompt, |
|
|
seed, |
|
|
randomize_seed, |
|
|
true_guidance_scale, |
|
|
num_inference_steps, |
|
|
height, |
|
|
width, |
|
|
rewrite_prompt, |
|
|
], |
|
|
outputs=[result, seed, use_output_btn], |
|
|
) |
|
|
|
|
|
|
|
|
use_output_btn.click( |
|
|
fn=use_output_as_input, |
|
|
inputs=[result], |
|
|
outputs=[reference_image] |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch(mcp_server=True) |