Spaces:
Running
Running
base model
Browse files
vgg19.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from torchvision import models
|
| 5 |
+
|
| 6 |
+
class VGG19(nn.Module):
|
| 7 |
+
def __init__(self, required_grad=False):
|
| 8 |
+
super(VGG19, self).__init__()
|
| 9 |
+
self.required_grad = required_grad
|
| 10 |
+
|
| 11 |
+
self.vgg19 = models.vgg19(weights='IMAGENET1K_V1', progress=True)
|
| 12 |
+
self.feature_maps = list(self.vgg19.children())[0]
|
| 13 |
+
self.conv_layers = nn.Sequential(*self.feature_maps)
|
| 14 |
+
|
| 15 |
+
for layers, params in self.vgg19.named_parameters():
|
| 16 |
+
if not self.required_grad:
|
| 17 |
+
params.requires_grad = False
|
| 18 |
+
|
| 19 |
+
def forward(self, x, mode='style'):
|
| 20 |
+
feature_maps = []
|
| 21 |
+
|
| 22 |
+
if mode == 'style':
|
| 23 |
+
layers = [0, 5, 10, 19, 28]
|
| 24 |
+
for i in range(len(self.feature_maps)):
|
| 25 |
+
x = self.feature_maps[i](x)
|
| 26 |
+
if i in layers:
|
| 27 |
+
feature_maps.append(x)
|
| 28 |
+
return feature_maps
|
| 29 |
+
|
| 30 |
+
elif mode == 'content':
|
| 31 |
+
layer = 21
|
| 32 |
+
for i in range(len(self.feature_maps)):
|
| 33 |
+
x = self.feature_maps[i](x)
|
| 34 |
+
if i == layer:
|
| 35 |
+
return x
|
| 36 |
+
|
| 37 |
+
def get_feature_maps(self, image):
|
| 38 |
+
feature_maps = []
|
| 39 |
+
for i in range(len(self.conv_layers)):
|
| 40 |
+
image = self.conv_layers[i](image)
|
| 41 |
+
if type(self.conv_layers[i]) == nn.Conv2d:
|
| 42 |
+
feature_maps.append(image)
|
| 43 |
+
return feature_maps
|