# Deployment Guide for Hugging Face Spaces This guide provides step-by-step instructions for deploying the Multi-Modal Knowledge Distillation application to Hugging Face Spaces. ## ๐Ÿ“‹ Pre-Deployment Checklist โœ… **Project Structure Complete** - All required files and directories are present - Python syntax validation passed - Frontend files are properly structured โœ… **Configuration Validated** - `requirements.txt` contains all necessary dependencies - `spaces_config.yaml` is properly configured - API endpoints are implemented and accessible โœ… **Documentation Complete** - Comprehensive README.md with usage instructions - API documentation included - Troubleshooting guide provided ## ๐Ÿš€ Deployment Steps ### Step 1: Create Hugging Face Space 1. **Go to Hugging Face Spaces** - Visit [https://huggingface.co/spaces](https://huggingface.co/spaces) - Click "Create new Space" 2. **Configure Space Settings** - **Space name**: `multi-modal-knowledge-distillation` (or your preferred name) - **License**: MIT - **SDK**: Gradio - **Hardware**: T4 small (minimum) or T4 medium (recommended) - **Visibility**: Public or Private (your choice) 3. **Initialize Repository** - Choose "Initialize with README" - Click "Create Space" ### Step 2: Upload Project Files Upload all the following files to your Space repository: #### Core Application Files ``` app.py # Main FastAPI application requirements.txt # Python dependencies spaces_config.yaml # Hugging Face Spaces configuration README.md # Project documentation .gitignore # Git ignore rules ``` #### Source Code ``` src/ โ”œโ”€โ”€ __init__.py # Package initialization โ”œโ”€โ”€ model_loader.py # Model loading utilities โ”œโ”€โ”€ distillation.py # Knowledge distillation engine โ””โ”€โ”€ utils.py # Utility functions ``` #### Frontend Files ``` templates/ โ””โ”€โ”€ index.html # Main web interface static/ โ”œโ”€โ”€ css/ โ”‚ โ””โ”€โ”€ style.css # Application styles โ””โ”€โ”€ js/ โ””โ”€โ”€ main.js # Frontend JavaScript ``` #### Directory Structure (will be created automatically) ``` uploads/ # Uploaded model files models/ # Trained models temp/ # Temporary files logs/ # Application logs ``` ### Step 3: Configure Hardware 1. **Go to Space Settings** - Click on "Settings" tab in your Space - Navigate to "Hardware" section 2. **Select Hardware** - **Minimum**: T4 small (16GB RAM, 1x T4 GPU) - **Recommended**: T4 medium (32GB RAM, 1x T4 GPU) - **For large models**: A10G small or larger 3. **Apply Changes** - Click "Update hardware" - Your Space will restart with new hardware ### Step 4: Monitor Deployment 1. **Build Process** - Watch the "Logs" tab for build progress - Build typically takes 5-10 minutes - Dependencies will be installed automatically 2. **Common Build Issues** - **PyTorch installation**: May take several minutes - **CUDA compatibility**: Ensure PyTorch version supports your hardware - **Memory issues**: Upgrade hardware if needed 3. **Successful Deployment** - Space status shows "Running" - Application is accessible via the Space URL - Health check endpoint responds correctly ## ๐Ÿ”ง Configuration Options ### Environment Variables You can set these in your Space settings: ```bash # Server Configuration PORT=7860 # Default port (usually not needed) HOST=0.0.0.0 # Default host # Resource Limits MAX_FILE_SIZE=5368709120 # 5GB max file size MAX_MODELS=10 # Maximum teacher models MAX_TRAINING_TIME=3600 # 1 hour training limit # GPU Configuration CUDA_VISIBLE_DEVICES=0 # GPU device selection ``` ### Hardware Recommendations | Use Case | Hardware | RAM | GPU | Cost | |----------|----------|-----|-----|------| | Demo/Testing | CPU Basic | 16GB | None | Free | | Small Models | T4 small | 16GB | T4 | Low | | Production | T4 medium | 32GB | T4 | Medium | | Large Models | A10G small | 24GB | A10G | High | ## ๐Ÿงช Testing Your Deployment ### 1. Health Check ```bash curl https://your-space-name-username.hf.space/health ``` ### 2. Web Interface - Visit your Space URL - Test file upload functionality - Verify model selection works - Check training configuration options ### 3. API Endpoints Test key endpoints: - `GET /` - Main interface - `POST /upload` - File upload - `GET /models` - List models - `WebSocket /ws/{session_id}` - Real-time updates ## ๐Ÿ› Troubleshooting ### Build Failures **PyTorch Installation Issues:** ```bash # Check if CUDA version is compatible # Update requirements.txt if needed torch==2.1.0+cu118 ``` **Memory Issues During Build:** - Upgrade to higher hardware tier - Reduce dependency versions - Remove unnecessary packages ### Runtime Issues **Out of Memory:** - Increase hardware tier - Reduce batch size in training - Implement model sharding **Model Loading Failures:** - Check file format compatibility - Verify Hugging Face model exists - Ensure sufficient disk space **WebSocket Connection Issues:** - Check browser compatibility - Verify firewall settings - Try refreshing the page ### Performance Issues **Slow Training:** - Upgrade to GPU hardware - Increase batch size - Use mixed precision training **High Memory Usage:** - Monitor system resources - Implement automatic cleanup - Reduce model cache size ## ๐Ÿ“Š Monitoring and Maintenance ### Logs and Monitoring - Check Space logs regularly - Monitor resource usage - Set up alerts for failures ### Updates and Maintenance - Keep dependencies updated - Monitor for security issues - Regular cleanup of temporary files ### Scaling Considerations - Monitor user load - Consider multiple Space instances - Implement load balancing if needed ## ๐Ÿ”’ Security Best Practices ### File Upload Security - Validate all uploaded files - Implement size limits - Scan for malicious content ### API Security - Implement rate limiting - Validate all inputs - Use HTTPS only ### Resource Protection - Monitor resource usage - Implement timeouts - Automatic cleanup procedures ## ๐Ÿ“ˆ Performance Optimization ### Model Loading - Cache frequently used models - Implement lazy loading - Use model compression ### Training Optimization - Use mixed precision - Implement gradient checkpointing - Optimize batch sizes ### Frontend Performance - Minimize JavaScript bundle - Optimize CSS delivery - Use CDN for static assets ## ๐ŸŽฏ Success Metrics Your deployment is successful when: โœ… **Functionality** - All API endpoints respond correctly - File uploads work without errors - Training completes successfully - Model downloads work properly โœ… **Performance** - Page loads in < 3 seconds - Training starts within 30 seconds - Real-time updates work smoothly - Resource usage is within limits โœ… **User Experience** - Interface is responsive on all devices - Error messages are clear and helpful - Progress tracking works accurately - Documentation is accessible ## ๐Ÿ“ž Support and Resources - **Hugging Face Spaces Documentation**: [https://huggingface.co/docs/hub/spaces](https://huggingface.co/docs/hub/spaces) - **FastAPI Documentation**: [https://fastapi.tiangolo.com/](https://fastapi.tiangolo.com/) - **PyTorch Documentation**: [https://pytorch.org/docs/](https://pytorch.org/docs/) --- **Your Multi-Modal Knowledge Distillation application is now ready for production deployment! ๐ŸŽ‰**