Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,62 +5,68 @@ from soprano import SopranoTTS
|
|
| 5 |
from scipy.io.wavfile import write as wav_write
|
| 6 |
import tempfile
|
| 7 |
import os
|
| 8 |
-
import spaces
|
| 9 |
|
|
|
|
| 10 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
-
print(DEVICE)
|
| 12 |
|
| 13 |
-
# Load model once
|
| 14 |
model = SopranoTTS(
|
| 15 |
-
backend="auto",
|
| 16 |
device=DEVICE,
|
| 17 |
-
cache_size_mb=100,
|
| 18 |
decoder_batch_size=1,
|
| 19 |
)
|
| 20 |
|
| 21 |
SAMPLE_RATE = 32000
|
| 22 |
|
| 23 |
-
|
| 24 |
-
@spaces.GPU
|
| 25 |
def tts_stream(text, temperature, top_p, repetition_penalty, state):
|
| 26 |
if not text.strip():
|
| 27 |
yield None, state
|
| 28 |
return
|
| 29 |
-
|
| 30 |
out = model.infer(
|
| 31 |
text,
|
| 32 |
temperature=temperature,
|
| 33 |
top_p=top_p,
|
| 34 |
repetition_penalty=repetition_penalty,
|
| 35 |
)
|
| 36 |
-
|
| 37 |
audio_np = out.cpu().numpy()
|
| 38 |
yield (SAMPLE_RATE, audio_np), audio_np
|
| 39 |
|
| 40 |
-
|
| 41 |
def save_audio(state):
|
| 42 |
if state is None or len(state) == 0:
|
| 43 |
return None
|
|
|
|
| 44 |
fd, path = tempfile.mkstemp(suffix=".wav")
|
| 45 |
os.close(fd)
|
| 46 |
wav_write(path, SAMPLE_RATE, state)
|
| 47 |
return path
|
| 48 |
|
| 49 |
-
|
| 50 |
with gr.Blocks() as demo:
|
| 51 |
state_audio = gr.State(None)
|
| 52 |
-
|
| 53 |
with gr.Row():
|
| 54 |
with gr.Column():
|
| 55 |
-
gr.Markdown(
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
text_in = gr.Textbox(
|
| 58 |
label="Input Text",
|
| 59 |
placeholder="Enter text to synthesize...",
|
| 60 |
value="Soprano is an extremely lightweight text to speech model designed to produce highly realistic speech at unprecedented speed.",
|
| 61 |
lines=4,
|
| 62 |
)
|
| 63 |
-
|
| 64 |
with gr.Accordion("Advanced options", open=False):
|
| 65 |
temperature = gr.Slider(
|
| 66 |
0.0, 1.0, value=0.3, step=0.05, label="Temperature"
|
|
@@ -71,37 +77,41 @@ with gr.Blocks() as demo:
|
|
| 71 |
repetition_penalty = gr.Slider(
|
| 72 |
1.0, 2.0, value=1.2, step=0.05, label="Repetition penalty"
|
| 73 |
)
|
| 74 |
-
|
| 75 |
gen_btn = gr.Button("Generate")
|
| 76 |
-
|
| 77 |
with gr.Column():
|
| 78 |
audio_out = gr.Audio(
|
| 79 |
label="Output Audio",
|
| 80 |
autoplay=True,
|
| 81 |
streaming=False,
|
| 82 |
)
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
| 85 |
gr.Markdown(
|
| 86 |
"Usage tips:\n\n"
|
| 87 |
"- Soprano works best when each sentence is between 2 and 15 seconds long.\n"
|
| 88 |
-
"- Although Soprano recognizes numbers and some special characters, it occasionally mispronounces them.
|
| 89 |
-
"
|
| 90 |
-
"-
|
|
|
|
|
|
|
|
|
|
| 91 |
)
|
| 92 |
-
|
| 93 |
-
|
| 94 |
gen_btn.click(
|
| 95 |
fn=tts_stream,
|
| 96 |
inputs=[text_in, temperature, top_p, repetition_penalty, state_audio],
|
| 97 |
outputs=[audio_out, state_audio],
|
| 98 |
)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
|
| 106 |
demo.queue()
|
| 107 |
demo.launch()
|
|
|
|
| 5 |
from scipy.io.wavfile import write as wav_write
|
| 6 |
import tempfile
|
| 7 |
import os
|
|
|
|
| 8 |
|
| 9 |
+
# Detect device
|
| 10 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
print(f"Using device: {DEVICE}")
|
| 12 |
|
| 13 |
+
# Load model once - works on both CUDA and CPU
|
| 14 |
model = SopranoTTS(
|
| 15 |
+
backend="auto", # Will automatically choose best backend for device
|
| 16 |
device=DEVICE,
|
| 17 |
+
cache_size_mb=100, # Only relevant for CUDA
|
| 18 |
decoder_batch_size=1,
|
| 19 |
)
|
| 20 |
|
| 21 |
SAMPLE_RATE = 32000
|
| 22 |
|
| 23 |
+
# Remove @spaces.GPU decorator - not needed for CPU support
|
|
|
|
| 24 |
def tts_stream(text, temperature, top_p, repetition_penalty, state):
|
| 25 |
if not text.strip():
|
| 26 |
yield None, state
|
| 27 |
return
|
| 28 |
+
|
| 29 |
out = model.infer(
|
| 30 |
text,
|
| 31 |
temperature=temperature,
|
| 32 |
top_p=top_p,
|
| 33 |
repetition_penalty=repetition_penalty,
|
| 34 |
)
|
| 35 |
+
|
| 36 |
audio_np = out.cpu().numpy()
|
| 37 |
yield (SAMPLE_RATE, audio_np), audio_np
|
| 38 |
|
|
|
|
| 39 |
def save_audio(state):
|
| 40 |
if state is None or len(state) == 0:
|
| 41 |
return None
|
| 42 |
+
|
| 43 |
fd, path = tempfile.mkstemp(suffix=".wav")
|
| 44 |
os.close(fd)
|
| 45 |
wav_write(path, SAMPLE_RATE, state)
|
| 46 |
return path
|
| 47 |
|
|
|
|
| 48 |
with gr.Blocks() as demo:
|
| 49 |
state_audio = gr.State(None)
|
| 50 |
+
|
| 51 |
with gr.Row():
|
| 52 |
with gr.Column():
|
| 53 |
+
gr.Markdown(
|
| 54 |
+
f"# Soprano Demo\n\n"
|
| 55 |
+
f"**Running on: {DEVICE.upper()}**\n\n"
|
| 56 |
+
"Soprano is an ultra‑lightweight, open‑source text‑to‑speech (TTS) model designed for real‑time, "
|
| 57 |
+
"high‑fidelity speech synthesis at unprecedented speed. Soprano can achieve **<15 ms streaming latency** "
|
| 58 |
+
"and up to **2000x real-time generation**, all while being easy to deploy at **<1 GB VRAM usage**.\n\n"
|
| 59 |
+
"Github: https://github.com/ekwek1/soprano\n\n"
|
| 60 |
+
"Model Weights: https://huggingface.co/ekwek/Soprano-80M"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
text_in = gr.Textbox(
|
| 64 |
label="Input Text",
|
| 65 |
placeholder="Enter text to synthesize...",
|
| 66 |
value="Soprano is an extremely lightweight text to speech model designed to produce highly realistic speech at unprecedented speed.",
|
| 67 |
lines=4,
|
| 68 |
)
|
| 69 |
+
|
| 70 |
with gr.Accordion("Advanced options", open=False):
|
| 71 |
temperature = gr.Slider(
|
| 72 |
0.0, 1.0, value=0.3, step=0.05, label="Temperature"
|
|
|
|
| 77 |
repetition_penalty = gr.Slider(
|
| 78 |
1.0, 2.0, value=1.2, step=0.05, label="Repetition penalty"
|
| 79 |
)
|
| 80 |
+
|
| 81 |
gen_btn = gr.Button("Generate")
|
| 82 |
+
|
| 83 |
with gr.Column():
|
| 84 |
audio_out = gr.Audio(
|
| 85 |
label="Output Audio",
|
| 86 |
autoplay=True,
|
| 87 |
streaming=False,
|
| 88 |
)
|
| 89 |
+
|
| 90 |
+
download_btn = gr.Button("Download")
|
| 91 |
+
file_out = gr.File(label="Download file")
|
| 92 |
+
|
| 93 |
gr.Markdown(
|
| 94 |
"Usage tips:\n\n"
|
| 95 |
"- Soprano works best when each sentence is between 2 and 15 seconds long.\n"
|
| 96 |
+
"- Although Soprano recognizes numbers and some special characters, it occasionally mispronounces them. "
|
| 97 |
+
"Best results can be achieved by converting these into their phonetic form. (1+1 -> one plus one, etc)\n"
|
| 98 |
+
"- If Soprano produces unsatisfactory results, you can easily regenerate it for a new, potentially better generation. "
|
| 99 |
+
"You may also change the sampling settings for more varied results.\n"
|
| 100 |
+
"- Avoid improper grammar such as not using contractions, multiple spaces, etc.\n\n"
|
| 101 |
+
f"**Note:** {'GPU acceleration active' if DEVICE == 'cuda' else 'Running on CPU - generation may be slower'}"
|
| 102 |
)
|
| 103 |
+
|
|
|
|
| 104 |
gen_btn.click(
|
| 105 |
fn=tts_stream,
|
| 106 |
inputs=[text_in, temperature, top_p, repetition_penalty, state_audio],
|
| 107 |
outputs=[audio_out, state_audio],
|
| 108 |
)
|
| 109 |
+
|
| 110 |
+
download_btn.click(
|
| 111 |
+
fn=save_audio,
|
| 112 |
+
inputs=[state_audio],
|
| 113 |
+
outputs=[file_out],
|
| 114 |
+
)
|
| 115 |
|
| 116 |
demo.queue()
|
| 117 |
demo.launch()
|