rtik007's picture
Update app.py
8a47560 verified
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification
from sklearn.ensemble import IsolationForest
from sklearn.metrics import roc_curve, auc
import shap
import matplotlib.pyplot as plt
import gradio as gr
# Generate synthetic data with 20 features
np.random.seed(42)
X, _ = make_classification(
n_samples=500,
n_features=20,
n_informative=10,
n_redundant=5,
n_clusters_per_class=1,
random_state=42
)
outliers = np.random.uniform(low=-6, high=6, size=(50, 20)) # Add outliers
X = np.vstack([X, outliers])
# Convert to DataFrame
columns = [f"Feature{i+1}" for i in range(20)]
df = pd.DataFrame(X, columns=columns)
# Fit Isolation Forest
iso_forest = IsolationForest(
n_estimators=100,
max_samples=256,
contamination=0.1,
random_state=42
)
iso_forest.fit(df)
# Predict anomaly scores
anomaly_scores = iso_forest.decision_function(df) # Negative values indicate anomalies
anomaly_labels = iso_forest.predict(df) # -1 for anomaly, 1 for normal
# Add results to DataFrame
df["Anomaly_Score"] = anomaly_scores
df["Anomaly_Label"] = np.where(anomaly_labels == -1, "Anomaly", "Normal")
# Generate true labels (1 for anomaly, 0 for normal) for ROC curve
true_labels = np.where(df["Anomaly_Label"] == "Anomaly", 1, 0)
# SHAP Explainability
explainer = shap.Explainer(iso_forest, df[columns])
shap_values = explainer(df[columns])
# Define functions for Gradio
def get_shap_summary():
"""Generates SHAP summary plot."""
plt.figure()
shap.summary_plot(shap_values, df[columns], feature_names=columns, show=False)
plt.savefig("shap_summary.png")
return "shap_summary.png"
def get_shap_waterfall(index):
"""Generates SHAP waterfall plot for a specific data point."""
specific_index = int(index)
plt.figure()
shap.waterfall_plot(
shap.Explanation(
values=shap_values.values[specific_index],
base_values=shap_values.base_values[specific_index],
data=df.iloc[specific_index],
feature_names=columns
)
)
plt.savefig("shap_waterfall.png")
return "shap_waterfall.png"
def get_scatter_plot(feature1, feature2):
"""Generates scatter plot for two features."""
plt.figure(figsize=(8, 6))
plt.scatter(
df[feature1],
df[feature2],
c=(df["Anomaly_Label"] == "Anomaly"),
cmap="coolwarm",
edgecolor="k",
alpha=0.7
)
plt.title(f"Isolation Forest - {feature1} vs {feature2}")
plt.xlabel(feature1)
plt.ylabel(feature2)
plt.savefig("scatter_plot.png")
return "scatter_plot.png"
def get_roc_curve():
"""Generates the ROC curve plot."""
fpr, tpr, _ = roc_curve(true_labels, -df["Anomaly_Score"]) # Use -scores as higher scores mean normal
roc_auc = auc(fpr, tpr)
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, label=f"ROC Curve (AUC = {roc_auc:.2f})")
plt.plot([0, 1], [0, 1], "k--", label="Random Guess")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver Operating Characteristic (ROC) Curve")
plt.legend(loc="lower right")
plt.grid()
plt.savefig("roc_curve.png")
return "roc_curve.png"
def get_anomaly_samples():
"""Returns formatted top, middle, and bottom 10 records based on anomaly score."""
sorted_df = df.sort_values("Anomaly_Score", ascending=False)
# Top 10 anomalies
top_10 = sorted_df[sorted_df["Anomaly_Label"] == "Anomaly"].head(10)
# Middle 10 (mix of anomalies and normal)
mid_start = len(sorted_df) // 2 - 50 # Get a broader middle slice
middle_section = sorted_df.iloc[mid_start: mid_start + 100] # Consider a larger middle slice
middle_anomalies = middle_section[middle_section["Anomaly_Label"] == "Anomaly"].sample(n=5, random_state=42)
middle_normals = middle_section[middle_section["Anomaly_Label"] == "Normal"].sample(n=5, random_state=42)
middle_10 = pd.concat([middle_anomalies, middle_normals]).sort_values("Anomaly_Score", ascending=False)
# Bottom 10 normal records
bottom_10 = sorted_df[sorted_df["Anomaly_Label"] == "Normal"].tail(10)
return top_10, middle_10, bottom_10
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Isolation Forest Anomaly Detection")
with gr.Tab("SHAP Summary"):
gr.Markdown("### Global Explainability: SHAP Summary Plot")
shap_button = gr.Button("Generate SHAP Summary Plot")
shap_image = gr.Image()
shap_button.click(get_shap_summary, outputs=shap_image)
with gr.Tab("SHAP Waterfall"):
gr.Markdown("### Local Explainability: SHAP Waterfall Plot")
index_input = gr.Number(label="Data Point Index", value=0)
shap_waterfall_button = gr.Button("Generate SHAP Waterfall Plot")
shap_waterfall_image = gr.Image()
shap_waterfall_button.click(get_shap_waterfall, inputs=index_input, outputs=shap_waterfall_image)
with gr.Tab("Feature Scatter Plot"):
gr.Markdown("### Feature Interaction: Scatter Plot")
feature1_dropdown = gr.Dropdown(choices=columns, label="Feature 1")
feature2_dropdown = gr.Dropdown(choices=columns, label="Feature 2")
scatter_button = gr.Button("Generate Scatter Plot")
scatter_image = gr.Image()
scatter_button.click(get_scatter_plot, inputs=[feature1_dropdown, feature2_dropdown], outputs=scatter_image)
with gr.Tab("Anomaly Samples"):
gr.HTML("<h3 style='text-align: center; font-size: 18px; font-weight: bold;'>Top 10 Records (Anomalies)</h3>")
top_table = gr.Dataframe(label="Top 10 Records")
gr.HTML("<h3 style='text-align: center; font-size: 18px; font-weight: bold;'>Middle 10 Records (Mixed)</h3>")
middle_table = gr.Dataframe(label="Middle 10 Records")
gr.HTML("<h3 style='text-align: center; font-size: 18px; font-weight: bold;'>Bottom 10 Records (Normal)</h3>")
bottom_table = gr.Dataframe(label="Bottom 10 Records")
anomaly_samples_button = gr.Button("Show Anomaly Samples")
anomaly_samples_button.click(
get_anomaly_samples,
outputs=[top_table, middle_table, bottom_table]
)
with gr.Tab("ROC Curve"):
gr.Markdown("### ROC Curve for Isolation Forest")
roc_button = gr.Button("Generate ROC Curve")
roc_image = gr.Image()
roc_button.click(get_roc_curve, outputs=roc_image)
# Launch the Gradio app
demo.launch()