Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,8 @@ from PIL import Image
|
|
| 8 |
|
| 9 |
import torch
|
| 10 |
from diffusers import (
|
|
|
|
|
|
|
| 11 |
StableDiffusionXLPipeline,
|
| 12 |
StableDiffusionXLImg2ImgPipeline,
|
| 13 |
EulerAncestralDiscreteScheduler,
|
|
@@ -15,7 +17,7 @@ from diffusers import (
|
|
| 15 |
from huggingface_hub import login
|
| 16 |
|
| 17 |
# ============================================================
|
| 18 |
-
# GPU decorator (
|
| 19 |
# ============================================================
|
| 20 |
try:
|
| 21 |
import spaces
|
|
@@ -24,66 +26,65 @@ except Exception:
|
|
| 24 |
def GPU_DECORATOR(fn):
|
| 25 |
return fn
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
|
|
|
| 29 |
MODEL_ID = "telcom/dee-unlearning-tiny-sd"
|
| 30 |
-
REVISION="main"
|
| 31 |
|
| 32 |
HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
|
| 33 |
if HF_TOKEN:
|
| 34 |
login(token=HF_TOKEN)
|
| 35 |
|
| 36 |
-
# ============================================================
|
| 37 |
-
# Detect device
|
| 38 |
-
# ============================================================
|
| 39 |
cuda_available = torch.cuda.is_available()
|
| 40 |
device = torch.device("cuda" if cuda_available else "cpu")
|
| 41 |
dtype = torch.float16 if cuda_available else torch.float32
|
| 42 |
|
| 43 |
MAX_SEED = np.iinfo(np.int32).max
|
| 44 |
-
MAX_IMAGE_SIZE = 1216 if cuda_available else 768
|
| 45 |
|
| 46 |
pipe_txt2img = None
|
| 47 |
pipe_img2img = None
|
| 48 |
-
|
| 49 |
model_loaded = False
|
| 50 |
load_error = None
|
| 51 |
-
fallback_msg = ""
|
| 52 |
-
|
| 53 |
|
| 54 |
# ============================================================
|
| 55 |
-
# Load model (
|
| 56 |
# ============================================================
|
| 57 |
try:
|
| 58 |
from_pretrained_kwargs = dict(
|
| 59 |
torch_dtype=dtype,
|
| 60 |
-
|
| 61 |
)
|
| 62 |
|
| 63 |
-
if cuda_available:
|
| 64 |
-
from_pretrained_kwargs["variant"] = "fp16"
|
| 65 |
-
|
| 66 |
if HF_TOKEN:
|
| 67 |
from_pretrained_kwargs["token"] = HF_TOKEN
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
pipe_txt2img.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 74 |
pipe_txt2img.scheduler.config
|
| 75 |
)
|
| 76 |
pipe_txt2img = pipe_txt2img.to(device)
|
| 77 |
|
| 78 |
-
# Memory
|
| 79 |
-
try:
|
| 80 |
-
pipe_txt2img.enable_vae_slicing()
|
| 81 |
-
except Exception:
|
| 82 |
-
pass
|
| 83 |
try:
|
| 84 |
pipe_txt2img.enable_attention_slicing()
|
|
|
|
| 85 |
except Exception:
|
| 86 |
pass
|
|
|
|
| 87 |
try:
|
| 88 |
pipe_txt2img.enable_xformers_memory_efficient_attention()
|
| 89 |
except Exception:
|
|
@@ -91,39 +92,31 @@ try:
|
|
| 91 |
|
| 92 |
pipe_txt2img.set_progress_bar_config(disable=True)
|
| 93 |
|
| 94 |
-
# Create img2img pipeline
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
pipe_img2img.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 97 |
pipe_img2img.scheduler.config
|
| 98 |
)
|
| 99 |
pipe_img2img = pipe_img2img.to(device)
|
| 100 |
|
| 101 |
-
try:
|
| 102 |
-
compel = CompelForSDXL(pipe_txt2img, device=str(device))
|
| 103 |
-
except TypeError:
|
| 104 |
-
compel = CompelForSDXL(pipe_txt2img)
|
| 105 |
-
|
| 106 |
model_loaded = True
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
load_error = repr(e)
|
| 110 |
model_loaded = False
|
| 111 |
|
| 112 |
-
|
| 113 |
-
if not cuda_available:
|
| 114 |
-
fallback_msg = "GPU unavailable. Running in CPU fallback mode (slower, smaller images)."
|
| 115 |
-
|
| 116 |
-
|
| 117 |
# ============================================================
|
| 118 |
-
#
|
| 119 |
# ============================================================
|
| 120 |
def _make_error_image(w, h, text):
|
| 121 |
-
|
| 122 |
-
return img
|
| 123 |
-
|
| 124 |
|
| 125 |
# ============================================================
|
| 126 |
-
# Inference
|
| 127 |
# ============================================================
|
| 128 |
@GPU_DECORATOR
|
| 129 |
def infer(
|
|
@@ -135,166 +128,97 @@ def infer(
|
|
| 135 |
height,
|
| 136 |
guidance_scale,
|
| 137 |
num_inference_steps,
|
| 138 |
-
init_image,
|
| 139 |
-
strength,
|
| 140 |
):
|
| 141 |
width = int(width)
|
| 142 |
height = int(height)
|
| 143 |
-
seed = int(seed)
|
| 144 |
|
| 145 |
-
if not model_loaded
|
| 146 |
-
|
| 147 |
-
if load_error:
|
| 148 |
-
msg += f" (details: {load_error})"
|
| 149 |
-
return _make_error_image(width, height, msg), msg
|
| 150 |
|
| 151 |
-
# Randomize seed if requested
|
| 152 |
if randomize_seed:
|
| 153 |
seed = random.randint(0, MAX_SEED)
|
| 154 |
|
| 155 |
-
|
| 156 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
| 157 |
-
else:
|
| 158 |
-
generator = torch.Generator().manual_seed(seed)
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
| 163 |
|
| 164 |
try:
|
| 165 |
with torch.inference_mode():
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
num_inference_steps=int(num_inference_steps),
|
| 175 |
-
generator=generator,
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
if device.type == "cuda":
|
| 179 |
-
with torch.autocast("cuda", dtype=dtype):
|
| 180 |
-
|
| 181 |
-
# If init_image is provided, use img2img
|
| 182 |
-
if init_image is not None:
|
| 183 |
-
image = pipe_img2img(
|
| 184 |
-
image=init_image,
|
| 185 |
-
strength=float(strength),
|
| 186 |
-
**common_kwargs,
|
| 187 |
-
).images[0]
|
| 188 |
-
else:
|
| 189 |
-
image = pipe_txt2img(
|
| 190 |
-
width=width,
|
| 191 |
-
height=height,
|
| 192 |
-
**common_kwargs,
|
| 193 |
-
).images[0]
|
| 194 |
else:
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
height=height,
|
| 205 |
-
**common_kwargs,
|
| 206 |
-
).images[0]
|
| 207 |
-
|
| 208 |
-
return image, status
|
| 209 |
|
| 210 |
except Exception as e:
|
| 211 |
-
|
| 212 |
-
return _make_error_image(width, height, msg), msg
|
| 213 |
|
| 214 |
finally:
|
| 215 |
gc.collect()
|
| 216 |
if device.type == "cuda":
|
| 217 |
torch.cuda.empty_cache()
|
| 218 |
|
| 219 |
-
|
| 220 |
# ============================================================
|
| 221 |
# UI
|
| 222 |
# ============================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
-
|
| 225 |
-
body{
|
| 226 |
-
background:#000;
|
| 227 |
-
color:#fff;
|
| 228 |
-
}
|
| 229 |
-
"""
|
| 230 |
-
|
| 231 |
-
with gr.Blocks(title="Text to Image / Image to Image") as demo:
|
| 232 |
-
|
| 233 |
-
gr.HTML(f"<style>{CSS}</style>")
|
| 234 |
-
|
| 235 |
-
with gr.Column():
|
| 236 |
-
|
| 237 |
-
# banner first
|
| 238 |
-
if fallback_msg:
|
| 239 |
-
gr.Markdown(f"**{fallback_msg}**")
|
| 240 |
-
|
| 241 |
-
if not model_loaded:
|
| 242 |
-
gr.Markdown(
|
| 243 |
-
f"⚠️ **Model failed to load.**\n\nDetails: {load_error}",
|
| 244 |
-
elem_classes=["small-note"],
|
| 245 |
-
)
|
| 246 |
-
|
| 247 |
-
gr.Markdown("## SDXL Generator (txt2img + img2img)")
|
| 248 |
-
|
| 249 |
-
prompt = gr.Textbox(
|
| 250 |
-
label="Prompt",
|
| 251 |
-
placeholder="Enter your prompt...",
|
| 252 |
-
lines=2,
|
| 253 |
-
)
|
| 254 |
-
|
| 255 |
-
# NEW: optional initial image for img2img
|
| 256 |
-
init_image = gr.Image(
|
| 257 |
-
label="Initial image (optional)",
|
| 258 |
-
type="pil",
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
run_button = gr.Button("Generate")
|
| 262 |
-
result = gr.Image(label="Result")
|
| 263 |
-
status = gr.Markdown("")
|
| 264 |
-
|
| 265 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 266 |
-
negative_prompt = gr.Textbox(label="Negative prompt", value="")
|
| 267 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 268 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 269 |
-
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
|
| 270 |
-
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
|
| 271 |
-
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=20, step=0.1, value=7)
|
| 272 |
-
num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=40, step=1, value=20)
|
| 273 |
-
|
| 274 |
-
# NEW: strength for img2img
|
| 275 |
-
strength = gr.Slider(
|
| 276 |
-
label="Image strength (for img2img)",
|
| 277 |
-
minimum=0.0,
|
| 278 |
-
maximum=1.0,
|
| 279 |
-
step=0.05,
|
| 280 |
-
value=0.7,
|
| 281 |
-
)
|
| 282 |
-
|
| 283 |
-
run_button.click(
|
| 284 |
-
fn=infer,
|
| 285 |
-
inputs=[
|
| 286 |
-
prompt,
|
| 287 |
-
negative_prompt,
|
| 288 |
-
seed,
|
| 289 |
-
randomize_seed,
|
| 290 |
-
width,
|
| 291 |
-
height,
|
| 292 |
-
guidance_scale,
|
| 293 |
-
num_inference_steps,
|
| 294 |
-
init_image,
|
| 295 |
-
strength,
|
| 296 |
-
],
|
| 297 |
-
outputs=[result, status],
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
demo.queue().launch(ssr_mode=False)
|
|
|
|
| 8 |
|
| 9 |
import torch
|
| 10 |
from diffusers import (
|
| 11 |
+
StableDiffusionPipeline,
|
| 12 |
+
StableDiffusionImg2ImgPipeline,
|
| 13 |
StableDiffusionXLPipeline,
|
| 14 |
StableDiffusionXLImg2ImgPipeline,
|
| 15 |
EulerAncestralDiscreteScheduler,
|
|
|
|
| 17 |
from huggingface_hub import login
|
| 18 |
|
| 19 |
# ============================================================
|
| 20 |
+
# Optional GPU decorator (Spaces)
|
| 21 |
# ============================================================
|
| 22 |
try:
|
| 23 |
import spaces
|
|
|
|
| 26 |
def GPU_DECORATOR(fn):
|
| 27 |
return fn
|
| 28 |
|
| 29 |
+
# ============================================================
|
| 30 |
+
# Config
|
| 31 |
+
# ============================================================
|
| 32 |
MODEL_ID = "telcom/dee-unlearning-tiny-sd"
|
| 33 |
+
REVISION = "main"
|
| 34 |
|
| 35 |
HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
|
| 36 |
if HF_TOKEN:
|
| 37 |
login(token=HF_TOKEN)
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
cuda_available = torch.cuda.is_available()
|
| 40 |
device = torch.device("cuda" if cuda_available else "cpu")
|
| 41 |
dtype = torch.float16 if cuda_available else torch.float32
|
| 42 |
|
| 43 |
MAX_SEED = np.iinfo(np.int32).max
|
| 44 |
+
MAX_IMAGE_SIZE = 1216 if cuda_available else 768
|
| 45 |
|
| 46 |
pipe_txt2img = None
|
| 47 |
pipe_img2img = None
|
| 48 |
+
is_sdxl = False
|
| 49 |
model_loaded = False
|
| 50 |
load_error = None
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# ============================================================
|
| 53 |
+
# Load model (AUTO detect SDXL vs SD)
|
| 54 |
# ============================================================
|
| 55 |
try:
|
| 56 |
from_pretrained_kwargs = dict(
|
| 57 |
torch_dtype=dtype,
|
| 58 |
+
revision=REVISION,
|
| 59 |
)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
| 61 |
if HF_TOKEN:
|
| 62 |
from_pretrained_kwargs["token"] = HF_TOKEN
|
| 63 |
|
| 64 |
+
# Try SDXL first
|
| 65 |
+
try:
|
| 66 |
+
pipe_txt2img = StableDiffusionXLPipeline.from_pretrained(
|
| 67 |
+
MODEL_ID, **from_pretrained_kwargs
|
| 68 |
+
)
|
| 69 |
+
is_sdxl = True
|
| 70 |
+
except Exception:
|
| 71 |
+
pipe_txt2img = StableDiffusionPipeline.from_pretrained(
|
| 72 |
+
MODEL_ID, **from_pretrained_kwargs
|
| 73 |
+
)
|
| 74 |
+
is_sdxl = False
|
| 75 |
+
|
| 76 |
pipe_txt2img.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 77 |
pipe_txt2img.scheduler.config
|
| 78 |
)
|
| 79 |
pipe_txt2img = pipe_txt2img.to(device)
|
| 80 |
|
| 81 |
+
# Memory optimisations
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
try:
|
| 83 |
pipe_txt2img.enable_attention_slicing()
|
| 84 |
+
pipe_txt2img.enable_vae_slicing()
|
| 85 |
except Exception:
|
| 86 |
pass
|
| 87 |
+
|
| 88 |
try:
|
| 89 |
pipe_txt2img.enable_xformers_memory_efficient_attention()
|
| 90 |
except Exception:
|
|
|
|
| 92 |
|
| 93 |
pipe_txt2img.set_progress_bar_config(disable=True)
|
| 94 |
|
| 95 |
+
# Create img2img pipeline
|
| 96 |
+
if is_sdxl:
|
| 97 |
+
pipe_img2img = StableDiffusionXLImg2ImgPipeline(**pipe_txt2img.components)
|
| 98 |
+
else:
|
| 99 |
+
pipe_img2img = StableDiffusionImg2ImgPipeline(**pipe_txt2img.components)
|
| 100 |
+
|
| 101 |
pipe_img2img.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 102 |
pipe_img2img.scheduler.config
|
| 103 |
)
|
| 104 |
pipe_img2img = pipe_img2img.to(device)
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
model_loaded = True
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
load_error = repr(e)
|
| 110 |
model_loaded = False
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
# ============================================================
|
| 113 |
+
# Helpers
|
| 114 |
# ============================================================
|
| 115 |
def _make_error_image(w, h, text):
|
| 116 |
+
return Image.new("RGB", (w, h), (30, 30, 40))
|
|
|
|
|
|
|
| 117 |
|
| 118 |
# ============================================================
|
| 119 |
+
# Inference
|
| 120 |
# ============================================================
|
| 121 |
@GPU_DECORATOR
|
| 122 |
def infer(
|
|
|
|
| 128 |
height,
|
| 129 |
guidance_scale,
|
| 130 |
num_inference_steps,
|
| 131 |
+
init_image,
|
| 132 |
+
strength,
|
| 133 |
):
|
| 134 |
width = int(width)
|
| 135 |
height = int(height)
|
|
|
|
| 136 |
|
| 137 |
+
if not model_loaded:
|
| 138 |
+
return _make_error_image(width, height, "Model not loaded"), load_error
|
|
|
|
|
|
|
|
|
|
| 139 |
|
|
|
|
| 140 |
if randomize_seed:
|
| 141 |
seed = random.randint(0, MAX_SEED)
|
| 142 |
|
| 143 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
+
common_kwargs = dict(
|
| 146 |
+
guidance_scale=float(guidance_scale),
|
| 147 |
+
num_inference_steps=int(num_inference_steps),
|
| 148 |
+
generator=generator,
|
| 149 |
+
)
|
| 150 |
|
| 151 |
try:
|
| 152 |
with torch.inference_mode():
|
| 153 |
+
if init_image is not None:
|
| 154 |
+
image = pipe_img2img(
|
| 155 |
+
prompt=prompt,
|
| 156 |
+
negative_prompt=negative_prompt,
|
| 157 |
+
image=init_image,
|
| 158 |
+
strength=float(strength),
|
| 159 |
+
**common_kwargs,
|
| 160 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
else:
|
| 162 |
+
image = pipe_txt2img(
|
| 163 |
+
prompt=prompt,
|
| 164 |
+
negative_prompt=negative_prompt,
|
| 165 |
+
width=width,
|
| 166 |
+
height=height,
|
| 167 |
+
**common_kwargs,
|
| 168 |
+
).images[0]
|
| 169 |
+
|
| 170 |
+
return image, f"Seed: {seed} | {'SDXL' if is_sdxl else 'SD 1.x'}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
except Exception as e:
|
| 173 |
+
return _make_error_image(width, height, "Generation error"), str(e)
|
|
|
|
| 174 |
|
| 175 |
finally:
|
| 176 |
gc.collect()
|
| 177 |
if device.type == "cuda":
|
| 178 |
torch.cuda.empty_cache()
|
| 179 |
|
|
|
|
| 180 |
# ============================================================
|
| 181 |
# UI
|
| 182 |
# ============================================================
|
| 183 |
+
with gr.Blocks(title="Text-to-Image / Image-to-Image") as demo:
|
| 184 |
+
|
| 185 |
+
gr.Markdown("## Stable Diffusion Generator")
|
| 186 |
+
|
| 187 |
+
if not model_loaded:
|
| 188 |
+
gr.Markdown(f"⚠️ **Model failed to load**\n\n{load_error}")
|
| 189 |
+
|
| 190 |
+
prompt = gr.Textbox(label="Prompt", lines=2)
|
| 191 |
+
init_image = gr.Image(label="Initial image (optional)", type="pil")
|
| 192 |
+
|
| 193 |
+
run_button = gr.Button("Generate")
|
| 194 |
+
result = gr.Image(label="Result")
|
| 195 |
+
status = gr.Markdown("")
|
| 196 |
+
|
| 197 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 198 |
+
negative_prompt = gr.Textbox(label="Negative prompt", value="")
|
| 199 |
+
seed = gr.Slider(0, MAX_SEED, value=0, step=1, label="Seed")
|
| 200 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 201 |
+
width = gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=512, label="Width")
|
| 202 |
+
height = gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=512, label="Height")
|
| 203 |
+
guidance_scale = gr.Slider(0, 20, step=0.1, value=7.5, label="Guidance scale")
|
| 204 |
+
num_inference_steps = gr.Slider(1, 40, step=1, value=20, label="Steps")
|
| 205 |
+
strength = gr.Slider(0.0, 1.0, step=0.05, value=0.7, label="Image strength")
|
| 206 |
+
|
| 207 |
+
run_button.click(
|
| 208 |
+
fn=infer,
|
| 209 |
+
inputs=[
|
| 210 |
+
prompt,
|
| 211 |
+
negative_prompt,
|
| 212 |
+
seed,
|
| 213 |
+
randomize_seed,
|
| 214 |
+
width,
|
| 215 |
+
height,
|
| 216 |
+
guidance_scale,
|
| 217 |
+
num_inference_steps,
|
| 218 |
+
init_image,
|
| 219 |
+
strength,
|
| 220 |
+
],
|
| 221 |
+
outputs=[result, status],
|
| 222 |
+
)
|
| 223 |
|
| 224 |
+
demo.queue().launch(ssr_mode=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|