Upload gLM2ForMaskedLM
Browse files- README.md +199 -0
- config.json +20 -0
- configuration_glm2.py +37 -0
- model.safetensors +3 -0
- modeling_glm2.py +565 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"gLM2ForMaskedLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_glm2.gLM2Config",
|
| 7 |
+
"AutoModel": "modeling_glm2.gLM2Model",
|
| 8 |
+
"AutoModelForMaskedLM": "modeling_glm2.gLM2ForMaskedLM"
|
| 9 |
+
},
|
| 10 |
+
"depth": 33,
|
| 11 |
+
"dim": 1280,
|
| 12 |
+
"ffn_dim_multiplier": null,
|
| 13 |
+
"heads": 20,
|
| 14 |
+
"model_type": "gLM2",
|
| 15 |
+
"norm_eps": 1e-05,
|
| 16 |
+
"swiglu_multiple_of": 256,
|
| 17 |
+
"torch_dtype": "float32",
|
| 18 |
+
"transformers_version": "4.44.1",
|
| 19 |
+
"vocab_size": 37
|
| 20 |
+
}
|
configuration_glm2.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""gLM2 model configuration"""
|
| 2 |
+
|
| 3 |
+
from typing import Optional
|
| 4 |
+
from transformers import PretrainedConfig
|
| 5 |
+
from transformers.utils import logging
|
| 6 |
+
|
| 7 |
+
logger = logging.get_logger(__name__)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class gLM2Config(PretrainedConfig):
|
| 11 |
+
model_type = "gLM2"
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
dim: int = 640,
|
| 16 |
+
depth: int = 30,
|
| 17 |
+
heads: int = 10,
|
| 18 |
+
vocab_size: int = 37,
|
| 19 |
+
swiglu_multiple_of: int = 256,
|
| 20 |
+
ffn_dim_multiplier: Optional[float] = None,
|
| 21 |
+
norm_eps: float = 1e-5,
|
| 22 |
+
**kwargs
|
| 23 |
+
):
|
| 24 |
+
super().__init__(**kwargs)
|
| 25 |
+
self.dim = dim
|
| 26 |
+
self.depth = depth
|
| 27 |
+
self.heads = heads
|
| 28 |
+
self.vocab_size = vocab_size
|
| 29 |
+
self.swiglu_multiple_of = swiglu_multiple_of
|
| 30 |
+
self.ffn_dim_multiplier = ffn_dim_multiplier
|
| 31 |
+
self.norm_eps = norm_eps
|
| 32 |
+
|
| 33 |
+
self.auto_map = {
|
| 34 |
+
"AutoConfig": "configuration_glm2.gLM2Config",
|
| 35 |
+
"AutoModel": "modeling_glm2.gLM2Model",
|
| 36 |
+
"AutoModelForMaskedLM": "modeling_glm2.gLM2ForMaskedLM"
|
| 37 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5fe88d1327accf1480a9c410f667c499387c141ec777a3f77d8635d28efc524e
|
| 3 |
+
size 2682482800
|
modeling_glm2.py
ADDED
|
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PyTorch gLM2 model.
|
| 2 |
+
|
| 3 |
+
Requires flash attention.
|
| 4 |
+
Some modules adapted from:
|
| 5 |
+
https://github.com/meta-llama/llama/blob/main/llama/model.py
|
| 6 |
+
"""
|
| 7 |
+
import math
|
| 8 |
+
import torch
|
| 9 |
+
from einops import rearrange
|
| 10 |
+
from typing import Optional, Tuple, Union
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.nn import CrossEntropyLoss
|
| 13 |
+
from transformers.modeling_outputs import (
|
| 14 |
+
BaseModelOutput,
|
| 15 |
+
MaskedLMOutput,
|
| 16 |
+
)
|
| 17 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
try:
|
| 21 |
+
from flash_attn.ops.activations import swiglu
|
| 22 |
+
from flash_attn.layers.rotary import apply_rotary_emb_func
|
| 23 |
+
from flash_attn import (
|
| 24 |
+
flash_attn_kvpacked_func,
|
| 25 |
+
flash_attn_varlen_kvpacked_func,
|
| 26 |
+
)
|
| 27 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
| 28 |
+
from flash_attn.ops.triton.layer_norm import RMSNorm
|
| 29 |
+
except ImportError:
|
| 30 |
+
raise ImportError(
|
| 31 |
+
"gLM2 requires flash attention: `pip install flash-attn --no-build-isolation`")
|
| 32 |
+
|
| 33 |
+
from .configuration_glm2 import gLM2Config
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
logger = logging.get_logger(__name__)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 40 |
+
"""
|
| 41 |
+
Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py.
|
| 42 |
+
Changed to only support passing in q or k individually, so that we can use varlen rotary.
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
+
dim: int,
|
| 48 |
+
base=10000.0,
|
| 49 |
+
interleaved=False,
|
| 50 |
+
scale_base=None,
|
| 51 |
+
pos_idx_in_fp32=True,
|
| 52 |
+
device=None,
|
| 53 |
+
):
|
| 54 |
+
super().__init__()
|
| 55 |
+
self.dim = dim
|
| 56 |
+
self.base = float(base)
|
| 57 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 58 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
| 59 |
+
inv_freq = self._compute_inv_freq(device)
|
| 60 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 61 |
+
self.interleaved = interleaved
|
| 62 |
+
self.scale_base = scale_base
|
| 63 |
+
scale = (
|
| 64 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
|
| 65 |
+
/ (1.4 * dim)
|
| 66 |
+
if scale_base is not None
|
| 67 |
+
else None
|
| 68 |
+
)
|
| 69 |
+
self.register_buffer("scale", scale, persistent=False)
|
| 70 |
+
|
| 71 |
+
self._seq_len_cached = 0
|
| 72 |
+
self._cos_cached = None
|
| 73 |
+
self._sin_cached = None
|
| 74 |
+
self._cos_k_cached = None
|
| 75 |
+
self._sin_k_cached = None
|
| 76 |
+
|
| 77 |
+
def _compute_inv_freq(self, device=None):
|
| 78 |
+
return 1.0 / (
|
| 79 |
+
self.base
|
| 80 |
+
** (
|
| 81 |
+
torch.arange(0, self.dim, 2, device=device,
|
| 82 |
+
dtype=torch.float32)
|
| 83 |
+
/ self.dim
|
| 84 |
+
)
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
| 88 |
+
# Reset the tables if the sequence length has changed,
|
| 89 |
+
# if we're on a new device (possibly due to tracing for instance),
|
| 90 |
+
# or if we're switching from inference mode to training
|
| 91 |
+
if (
|
| 92 |
+
seqlen > self._seq_len_cached
|
| 93 |
+
or self._cos_cached is None
|
| 94 |
+
or self._cos_cached.device != device
|
| 95 |
+
or self._cos_cached.dtype != dtype
|
| 96 |
+
or (self.training and self._cos_cached.is_inference())
|
| 97 |
+
):
|
| 98 |
+
self._seq_len_cached = seqlen
|
| 99 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
| 100 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
| 101 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
| 102 |
+
if self.pos_idx_in_fp32:
|
| 103 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 104 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
| 105 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
| 106 |
+
# cos & sin output to change significantly.
|
| 107 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
| 108 |
+
if self.inv_freq.dtype != torch.float32:
|
| 109 |
+
inv_freq = self._compute_inv_freq(device=device)
|
| 110 |
+
else:
|
| 111 |
+
inv_freq = self.inv_freq
|
| 112 |
+
else:
|
| 113 |
+
t = torch.arange(seqlen, device=device,
|
| 114 |
+
dtype=self.inv_freq.dtype)
|
| 115 |
+
inv_freq = self.inv_freq
|
| 116 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
| 117 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 118 |
+
freqs = torch.outer(t, inv_freq)
|
| 119 |
+
if self.scale is None:
|
| 120 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 121 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 122 |
+
else:
|
| 123 |
+
power = (
|
| 124 |
+
torch.arange(
|
| 125 |
+
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
| 126 |
+
)
|
| 127 |
+
- seqlen // 2
|
| 128 |
+
) / self.scale_base
|
| 129 |
+
scale = self.scale.to(device=power.device) ** rearrange(
|
| 130 |
+
power, "s -> s 1"
|
| 131 |
+
)
|
| 132 |
+
# We want the multiplication by scale to happen in fp32
|
| 133 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
| 134 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
| 135 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
| 136 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
| 137 |
+
|
| 138 |
+
def forward(
|
| 139 |
+
self,
|
| 140 |
+
q: torch.Tensor,
|
| 141 |
+
k: torch.Tensor,
|
| 142 |
+
seqlen_offset: Union[int, torch.Tensor] = 0,
|
| 143 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 144 |
+
max_seqlen: Optional[int] = None,
|
| 145 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 146 |
+
"""
|
| 147 |
+
q: (batch, seqlen, nheads, headdim). If cu_seqlens is not None,
|
| 148 |
+
shape (total_seqlen, nheads, headdim).
|
| 149 |
+
k: (batch, seqlen, nheads, headdim). If cu_seqlens is not None,
|
| 150 |
+
shape (total_seqlen, nheads, headdim).
|
| 151 |
+
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
| 152 |
+
Most commonly used in inference when we have KV cache.
|
| 153 |
+
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
| 154 |
+
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
| 155 |
+
Apply rotary embedding *inplace* to qkv and / or kv.
|
| 156 |
+
"""
|
| 157 |
+
if cu_seqlens is not None:
|
| 158 |
+
assert max_seqlen is not None
|
| 159 |
+
seqlen = q.shape[1] if max_seqlen is None else max_seqlen
|
| 160 |
+
if max_seqlen is not None:
|
| 161 |
+
self._update_cos_sin_cache(
|
| 162 |
+
max_seqlen, device=q.device, dtype=q.dtype)
|
| 163 |
+
elif isinstance(seqlen_offset, int):
|
| 164 |
+
self._update_cos_sin_cache(
|
| 165 |
+
seqlen + seqlen_offset, device=q.device, dtype=q.dtype
|
| 166 |
+
)
|
| 167 |
+
q = apply_rotary_emb_func(
|
| 168 |
+
q,
|
| 169 |
+
self._cos_cached,
|
| 170 |
+
self._sin_cached,
|
| 171 |
+
interleaved=self.interleaved,
|
| 172 |
+
inplace=True,
|
| 173 |
+
seqlen_offsets=seqlen_offset,
|
| 174 |
+
cu_seqlens=cu_seqlens,
|
| 175 |
+
max_seqlen=max_seqlen,
|
| 176 |
+
)
|
| 177 |
+
if self.scale is None:
|
| 178 |
+
k = apply_rotary_emb_func(
|
| 179 |
+
k,
|
| 180 |
+
self._cos_cached,
|
| 181 |
+
self._sin_cached,
|
| 182 |
+
interleaved=self.interleaved,
|
| 183 |
+
inplace=True,
|
| 184 |
+
seqlen_offsets=seqlen_offset,
|
| 185 |
+
cu_seqlens=cu_seqlens,
|
| 186 |
+
max_seqlen=max_seqlen,
|
| 187 |
+
)
|
| 188 |
+
else:
|
| 189 |
+
k = apply_rotary_emb_func(
|
| 190 |
+
k,
|
| 191 |
+
self._cos_k_cached,
|
| 192 |
+
self._sin_k_cached,
|
| 193 |
+
interleaved=self.interleaved,
|
| 194 |
+
inplace=True,
|
| 195 |
+
seqlen_offsets=seqlen_offset,
|
| 196 |
+
cu_seqlens=cu_seqlens,
|
| 197 |
+
max_seqlen=max_seqlen,
|
| 198 |
+
)
|
| 199 |
+
return q, k
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
# @torch.jit.script
|
| 203 |
+
# def rmsnorm_func(hidden_states, weight, variance_epsilon):
|
| 204 |
+
# """Apply the root mean square normalization."""
|
| 205 |
+
# input_dtype = hidden_states.dtype
|
| 206 |
+
# hidden_states = hidden_states.to(torch.float32)
|
| 207 |
+
# variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 208 |
+
# hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
|
| 209 |
+
# return (weight * hidden_states).to(input_dtype)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
# class RMSNorm(nn.Module):
|
| 213 |
+
# """Root mean square normalization."""
|
| 214 |
+
|
| 215 |
+
# def __init__(self, dim, eps=1e-6):
|
| 216 |
+
# super().__init__()
|
| 217 |
+
# self.weight = nn.Parameter(torch.ones(dim))
|
| 218 |
+
# self.register_buffer(
|
| 219 |
+
# "variance_epsilon",
|
| 220 |
+
# torch.tensor(eps),
|
| 221 |
+
# persistent=False,
|
| 222 |
+
# )
|
| 223 |
+
|
| 224 |
+
# def forward(self, hidden_states):
|
| 225 |
+
# return rmsnorm_func(hidden_states, self.weight, self.variance_epsilon)
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
class Attention(nn.Module):
|
| 229 |
+
"""Multi-head attention module."""
|
| 230 |
+
|
| 231 |
+
def __init__(self, config: gLM2Config):
|
| 232 |
+
super().__init__()
|
| 233 |
+
self.n_heads = config.heads
|
| 234 |
+
self.head_dim = config.dim // config.heads
|
| 235 |
+
|
| 236 |
+
self.wqkv = nn.Linear(config.dim, self.n_heads *
|
| 237 |
+
self.head_dim * 3, bias=False)
|
| 238 |
+
self.wo = nn.Linear(config.heads * self.head_dim,
|
| 239 |
+
config.dim, bias=False)
|
| 240 |
+
|
| 241 |
+
self.rotary_emb = RotaryEmbedding(self.head_dim)
|
| 242 |
+
|
| 243 |
+
def _forward_varlen(
|
| 244 |
+
self,
|
| 245 |
+
x: torch.Tensor,
|
| 246 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 247 |
+
max_seq_len: Optional[torch.Tensor] = None,
|
| 248 |
+
) -> torch.Tensor:
|
| 249 |
+
total_seqlen, h_size = x.shape
|
| 250 |
+
qkv = self.wqkv(x)
|
| 251 |
+
q, k, v = torch.split(qkv, self.n_heads * self.head_dim, dim=-1)
|
| 252 |
+
|
| 253 |
+
q = q.view(total_seqlen, self.n_heads, self.head_dim)
|
| 254 |
+
k = k.view(total_seqlen, self.n_heads, self.head_dim)
|
| 255 |
+
v = v.view(total_seqlen, self.n_heads, self.head_dim)
|
| 256 |
+
|
| 257 |
+
q, k = self.rotary_emb(
|
| 258 |
+
q, k, cu_seqlens=cu_seqlens, max_seqlen=max_seq_len)
|
| 259 |
+
|
| 260 |
+
# (seqlen, 2, n_heads, head_dim)
|
| 261 |
+
kv = torch.stack([k, v], 1)
|
| 262 |
+
|
| 263 |
+
# (seqlen, n_heads, head_dim)
|
| 264 |
+
output = flash_attn_varlen_kvpacked_func(
|
| 265 |
+
q,
|
| 266 |
+
kv,
|
| 267 |
+
cu_seqlens_q=cu_seqlens,
|
| 268 |
+
cu_seqlens_k=cu_seqlens,
|
| 269 |
+
max_seqlen_q=max_seq_len,
|
| 270 |
+
max_seqlen_k=max_seq_len,
|
| 271 |
+
dropout_p=0.0,
|
| 272 |
+
causal=False,
|
| 273 |
+
)
|
| 274 |
+
output = output.view(total_seqlen, h_size)
|
| 275 |
+
return self.wo(output)
|
| 276 |
+
|
| 277 |
+
def forward(
|
| 278 |
+
self,
|
| 279 |
+
x: torch.Tensor,
|
| 280 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 281 |
+
max_seq_len: Optional[torch.Tensor] = None,
|
| 282 |
+
) -> torch.Tensor:
|
| 283 |
+
if cu_seqlens is not None:
|
| 284 |
+
assert max_seq_len is not None
|
| 285 |
+
return self._forward_varlen(x, cu_seqlens, max_seq_len)
|
| 286 |
+
|
| 287 |
+
bsz, seqlen, h_size = x.shape
|
| 288 |
+
qkv = self.wqkv(x)
|
| 289 |
+
q, k, v = torch.split(qkv, self.n_heads * self.head_dim, dim=-1)
|
| 290 |
+
q = q.view(bsz, seqlen, self.n_heads, self.head_dim)
|
| 291 |
+
k = k.view(bsz, seqlen, self.n_heads, self.head_dim)
|
| 292 |
+
v = v.view(bsz, seqlen, self.n_heads, self.head_dim)
|
| 293 |
+
|
| 294 |
+
q, k = self.rotary_emb(q, k)
|
| 295 |
+
# (bs, seqlen, 2, n_heads, head_dim)
|
| 296 |
+
kv = torch.stack([k, v], 2)
|
| 297 |
+
|
| 298 |
+
output = flash_attn_kvpacked_func(
|
| 299 |
+
q,
|
| 300 |
+
kv,
|
| 301 |
+
dropout_p=0.0,
|
| 302 |
+
causal=False,
|
| 303 |
+
)
|
| 304 |
+
output = output.view(bsz, seqlen, h_size)
|
| 305 |
+
return self.wo(output)
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
class FeedForward(nn.Module):
|
| 309 |
+
def __init__(
|
| 310 |
+
self,
|
| 311 |
+
dim: int,
|
| 312 |
+
hidden_dim: int,
|
| 313 |
+
multiple_of: int,
|
| 314 |
+
ffn_dim_multiplier: Optional[float],
|
| 315 |
+
):
|
| 316 |
+
"""
|
| 317 |
+
SwiGLU FeedForward module.
|
| 318 |
+
|
| 319 |
+
Args:
|
| 320 |
+
dim (int): Input dimension.
|
| 321 |
+
hidden_dim (int): Hidden dimension of the feedforward layer.
|
| 322 |
+
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
|
| 323 |
+
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
|
| 324 |
+
"""
|
| 325 |
+
super().__init__()
|
| 326 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 327 |
+
# custom dim factor multiplier
|
| 328 |
+
if ffn_dim_multiplier is not None:
|
| 329 |
+
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
| 330 |
+
hidden_dim = multiple_of * \
|
| 331 |
+
((hidden_dim + multiple_of - 1) // multiple_of)
|
| 332 |
+
|
| 333 |
+
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
| 334 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
| 335 |
+
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
| 336 |
+
|
| 337 |
+
def forward(self, x):
|
| 338 |
+
return self.w2(swiglu(self.w1(x), self.w3(x)))
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
class TransformerBlock(nn.Module):
|
| 342 |
+
def __init__(self, config: gLM2Config):
|
| 343 |
+
super().__init__()
|
| 344 |
+
self.n_heads = config.heads
|
| 345 |
+
self.dim = config.dim
|
| 346 |
+
self.head_dim = config.dim // config.heads
|
| 347 |
+
self.attention = Attention(config)
|
| 348 |
+
self.feed_forward = FeedForward(
|
| 349 |
+
dim=config.dim,
|
| 350 |
+
hidden_dim=4 * config.dim,
|
| 351 |
+
multiple_of=config.swiglu_multiple_of,
|
| 352 |
+
ffn_dim_multiplier=config.ffn_dim_multiplier,
|
| 353 |
+
)
|
| 354 |
+
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 355 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 356 |
+
|
| 357 |
+
def forward(
|
| 358 |
+
self,
|
| 359 |
+
x: torch.Tensor,
|
| 360 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 361 |
+
max_seq_len: Optional[torch.Tensor] = None,
|
| 362 |
+
) -> torch.Tensor:
|
| 363 |
+
r = self.attention(
|
| 364 |
+
self.attention_norm(x), cu_seqlens, max_seq_len
|
| 365 |
+
)
|
| 366 |
+
h = x + r
|
| 367 |
+
r = self.feed_forward(self.ffn_norm(h))
|
| 368 |
+
out = h + r
|
| 369 |
+
return out
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
class TransformerLayers(nn.Module):
|
| 373 |
+
def __init__(self, config: gLM2Config):
|
| 374 |
+
super().__init__()
|
| 375 |
+
self.config = config
|
| 376 |
+
self.layers = torch.nn.ModuleList(
|
| 377 |
+
[TransformerBlock(config=config) for _ in range(config.depth)]
|
| 378 |
+
)
|
| 379 |
+
self.apply(self._init_weights)
|
| 380 |
+
# Apply special scaled init to the residual projections, per GPT-2 paper.
|
| 381 |
+
# Weight w2 is output of FeedForward. Weight wo is output of Attention.
|
| 382 |
+
for pn, p in self.named_parameters():
|
| 383 |
+
if pn.endswith('w2.weight') or pn.endswith('wo.weight'):
|
| 384 |
+
torch.nn.init.normal_(
|
| 385 |
+
p, mean=0.0, std=0.02/math.sqrt(2 * self.config.depth))
|
| 386 |
+
|
| 387 |
+
def _init_weights(self, module):
|
| 388 |
+
if isinstance(module, nn.Linear):
|
| 389 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 390 |
+
if module.bias is not None:
|
| 391 |
+
torch.nn.init.zeros_(module.bias)
|
| 392 |
+
|
| 393 |
+
def forward(
|
| 394 |
+
self,
|
| 395 |
+
x: torch.FloatTensor,
|
| 396 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
| 397 |
+
return_all_hiddens: bool = False,
|
| 398 |
+
):
|
| 399 |
+
if x.shape[-1] != self.config.dim:
|
| 400 |
+
raise ValueError(
|
| 401 |
+
f"Input feature dim should be {self.config.dim}, but input has shape {x.shape}"
|
| 402 |
+
)
|
| 403 |
+
batch_size, seq_len = x.shape[:2]
|
| 404 |
+
should_unpad = attention_mask is not None and not attention_mask.all()
|
| 405 |
+
if should_unpad:
|
| 406 |
+
x, indices, cu_seqlens, max_seq_len_in_batch = unpad_input(
|
| 407 |
+
x, attention_mask
|
| 408 |
+
)
|
| 409 |
+
else:
|
| 410 |
+
indices, cu_seqlens, max_seq_len_in_batch = None, None, None
|
| 411 |
+
hiddens = []
|
| 412 |
+
for layer in self.layers:
|
| 413 |
+
x = layer(x, cu_seqlens, max_seq_len_in_batch)
|
| 414 |
+
if return_all_hiddens:
|
| 415 |
+
hiddens.append(x)
|
| 416 |
+
|
| 417 |
+
if should_unpad:
|
| 418 |
+
x = pad_input(x, indices, batch_size, seq_len)
|
| 419 |
+
if return_all_hiddens:
|
| 420 |
+
hiddens = [pad_input(h, indices, batch_size, seq_len)
|
| 421 |
+
for h in hiddens]
|
| 422 |
+
|
| 423 |
+
if return_all_hiddens:
|
| 424 |
+
return x, hiddens
|
| 425 |
+
return x
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
class gLM2PreTrainedModel(PreTrainedModel):
|
| 429 |
+
"""
|
| 430 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 431 |
+
models.
|
| 432 |
+
"""
|
| 433 |
+
config_class = gLM2Config
|
| 434 |
+
base_model_prefix = "glm2"
|
| 435 |
+
supports_gradient_checkpointing = False
|
| 436 |
+
|
| 437 |
+
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
| 438 |
+
def _init_weights(module, initializer_range=0.02):
|
| 439 |
+
if isinstance(module, nn.Linear):
|
| 440 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
| 441 |
+
if module.bias is not None:
|
| 442 |
+
nn.init.zeros_(module.bias)
|
| 443 |
+
elif isinstance(module, nn.Embedding):
|
| 444 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
| 445 |
+
if module.padding_idx is not None:
|
| 446 |
+
nn.init.zeros_(module.weight[module.padding_idx])
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
class gLM2Model(gLM2PreTrainedModel):
|
| 450 |
+
"""gLM2 Model."""
|
| 451 |
+
|
| 452 |
+
def __init__(self, config: gLM2Config):
|
| 453 |
+
super().__init__(config)
|
| 454 |
+
self.config = config
|
| 455 |
+
|
| 456 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
| 457 |
+
self._init_weights(self.tok_embeddings)
|
| 458 |
+
self.encoder = TransformerLayers(config)
|
| 459 |
+
|
| 460 |
+
def _init_weights(self, module):
|
| 461 |
+
if isinstance(module, nn.Linear):
|
| 462 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 463 |
+
if module.bias is not None:
|
| 464 |
+
torch.nn.init.zeros_(module.bias)
|
| 465 |
+
elif isinstance(module, nn.Embedding):
|
| 466 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 467 |
+
|
| 468 |
+
def forward(
|
| 469 |
+
self,
|
| 470 |
+
input_ids: torch.Tensor,
|
| 471 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 472 |
+
output_hidden_states: Optional[bool] = None,
|
| 473 |
+
return_dict: Optional[bool] = None,
|
| 474 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 475 |
+
output_hidden_states = (
|
| 476 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 477 |
+
)
|
| 478 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 479 |
+
|
| 480 |
+
h = self.tok_embeddings(input_ids)
|
| 481 |
+
if output_hidden_states:
|
| 482 |
+
sequence_output, all_hidden_states = self.encoder(
|
| 483 |
+
h, attention_mask, return_all_hiddens=True)
|
| 484 |
+
else:
|
| 485 |
+
sequence_output = self.encoder(h, attention_mask)
|
| 486 |
+
all_hidden_states = None
|
| 487 |
+
|
| 488 |
+
if not return_dict:
|
| 489 |
+
return (sequence_output, all_hidden_states)
|
| 490 |
+
|
| 491 |
+
return BaseModelOutput(
|
| 492 |
+
last_hidden_state=sequence_output,
|
| 493 |
+
hidden_states=all_hidden_states,
|
| 494 |
+
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
class gLM2ForMaskedLM(gLM2PreTrainedModel):
|
| 499 |
+
|
| 500 |
+
def __init__(self, config: gLM2Config):
|
| 501 |
+
super().__init__(config)
|
| 502 |
+
|
| 503 |
+
self.glm2 = gLM2Model(config)
|
| 504 |
+
self.lm_head = gLM2LMHead(config)
|
| 505 |
+
self._init_weights(self.lm_head)
|
| 506 |
+
|
| 507 |
+
def _init_weights(self, module):
|
| 508 |
+
if isinstance(module, nn.Linear):
|
| 509 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 510 |
+
if module.bias is not None:
|
| 511 |
+
torch.nn.init.zeros_(module.bias)
|
| 512 |
+
elif isinstance(module, nn.Embedding):
|
| 513 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 514 |
+
|
| 515 |
+
def forward(
|
| 516 |
+
self,
|
| 517 |
+
input_ids: torch.Tensor,
|
| 518 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 519 |
+
labels: Optional[torch.LongTensor] = None,
|
| 520 |
+
output_hidden_states: Optional[bool] = None,
|
| 521 |
+
return_dict: Optional[bool] = None,
|
| 522 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
| 523 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 524 |
+
|
| 525 |
+
outputs = self.glm2(
|
| 526 |
+
input_ids,
|
| 527 |
+
attention_mask=attention_mask,
|
| 528 |
+
output_hidden_states=output_hidden_states,
|
| 529 |
+
return_dict=return_dict,
|
| 530 |
+
)
|
| 531 |
+
sequence_output = outputs[0]
|
| 532 |
+
prediction_scores = self.lm_head(sequence_output)
|
| 533 |
+
|
| 534 |
+
masked_lm_loss = None
|
| 535 |
+
if labels is not None:
|
| 536 |
+
loss_fct = CrossEntropyLoss()
|
| 537 |
+
|
| 538 |
+
labels = labels.to(prediction_scores.device)
|
| 539 |
+
masked_lm_loss = loss_fct(
|
| 540 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 541 |
+
|
| 542 |
+
if not return_dict:
|
| 543 |
+
output = (prediction_scores,) + outputs[2:]
|
| 544 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 545 |
+
|
| 546 |
+
return MaskedLMOutput(
|
| 547 |
+
loss=masked_lm_loss,
|
| 548 |
+
logits=prediction_scores,
|
| 549 |
+
hidden_states=outputs.hidden_states,
|
| 550 |
+
attentions=outputs.attentions,
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
class gLM2LMHead(nn.Module):
|
| 555 |
+
"""gLM2 head for masked language modeling."""
|
| 556 |
+
|
| 557 |
+
def __init__(self, config):
|
| 558 |
+
super().__init__()
|
| 559 |
+
|
| 560 |
+
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 561 |
+
self.proj_output = nn.Linear(
|
| 562 |
+
config.dim, config.vocab_size, bias=False)
|
| 563 |
+
|
| 564 |
+
def forward(self, features):
|
| 565 |
+
return self.proj_output(self.norm(features))
|