Upload all models and assets for dga (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +326 -132
- models/embeddings/aligned/dga_128d.bin +3 -0
- models/embeddings/aligned/dga_128d.meta.json +1 -0
- models/embeddings/aligned/dga_128d.projection.npy +3 -0
- models/embeddings/aligned/dga_128d_metadata.json +8 -0
- models/embeddings/aligned/dga_32d.bin +3 -0
- models/embeddings/aligned/dga_32d.meta.json +1 -0
- models/embeddings/aligned/dga_32d.projection.npy +3 -0
- models/embeddings/aligned/dga_32d_metadata.json +8 -0
- models/embeddings/aligned/dga_64d.bin +3 -0
- models/embeddings/aligned/dga_64d.meta.json +1 -0
- models/embeddings/aligned/dga_64d.projection.npy +3 -0
- models/embeddings/aligned/dga_64d_metadata.json +8 -0
- models/embeddings/monolingual/dga_128d.bin +2 -2
- models/embeddings/monolingual/dga_128d_metadata.json +5 -3
- models/embeddings/monolingual/dga_32d.bin +2 -2
- models/embeddings/monolingual/dga_32d_metadata.json +5 -3
- models/embeddings/monolingual/dga_64d.bin +2 -2
- models/embeddings/monolingual/dga_64d_metadata.json +5 -3
- models/subword_markov/dga_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/dga_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/dga_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/dga_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/dga_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/dga_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/dga_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/dga_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/dga_2gram_subword.parquet +2 -2
- models/subword_ngram/dga_2gram_subword_metadata.json +2 -2
- models/subword_ngram/dga_3gram_subword.parquet +2 -2
- models/subword_ngram/dga_3gram_subword_metadata.json +2 -2
- models/subword_ngram/dga_4gram_subword.parquet +2 -2
- models/subword_ngram/dga_4gram_subword_metadata.json +2 -2
- models/subword_ngram/dga_5gram_subword.parquet +3 -0
- models/subword_ngram/dga_5gram_subword_metadata.json +7 -0
- models/tokenizer/dga_tokenizer_16k.model +2 -2
- models/tokenizer/dga_tokenizer_16k.vocab +0 -0
- models/tokenizer/dga_tokenizer_32k.model +2 -2
- models/tokenizer/dga_tokenizer_32k.vocab +0 -0
- models/tokenizer/dga_tokenizer_64k.model +2 -2
- models/tokenizer/dga_tokenizer_64k.vocab +0 -0
- models/tokenizer/dga_tokenizer_8k.model +2 -2
- models/tokenizer/dga_tokenizer_8k.vocab +0 -0
- models/vocabulary/dga_vocabulary.parquet +2 -2
- models/vocabulary/dga_vocabulary_metadata.json +10 -9
- models/word_markov/dga_markov_ctx1_word.parquet +2 -2
- models/word_markov/dga_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/dga_markov_ctx2_word.parquet +2 -2
- models/word_markov/dga_markov_ctx2_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: dga
|
| 3 |
-
language_name:
|
| 4 |
language_family: atlantic_gur
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-atlantic_gur
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value:
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -44,12 +54,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +70,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,53 +80,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** | 3.
|
| 76 |
-
| **16k** | 3.
|
| 77 |
-
| **32k** | 3.
|
| 78 |
-
| **64k** |
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:** `
|
| 85 |
|
| 86 |
| Vocab | Tokens | Count |
|
| 87 |
|-------|--------|-------|
|
| 88 |
-
| 8k | `▁
|
| 89 |
-
| 16k | `▁
|
| 90 |
-
| 32k | `▁
|
| 91 |
-
| 64k | `▁
|
| 92 |
|
| 93 |
-
**Sample 2:** `
|
| 94 |
|
| 95 |
| Vocab | Tokens | Count |
|
| 96 |
|-------|--------|-------|
|
| 97 |
-
| 8k | `▁
|
| 98 |
-
| 16k | `▁
|
| 99 |
-
| 32k | `▁
|
| 100 |
-
| 64k | `▁
|
| 101 |
-
|
| 102 |
-
**Sample 3:** `Ullo e la yie bile kaŋ naŋ be Upper West Region.
|
| 103 |
|
| 104 |
-
|
| 105 |
|
| 106 |
| Vocab | Tokens | Count |
|
| 107 |
|-------|--------|-------|
|
| 108 |
-
| 8k | `▁
|
| 109 |
-
| 16k | `▁
|
| 110 |
-
| 32k | `▁
|
| 111 |
-
| 64k | `▁
|
| 112 |
|
| 113 |
|
| 114 |
### Key Findings
|
| 115 |
|
| 116 |
-
- **Best Compression:** 64k achieves
|
| 117 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 118 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 119 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 120 |
|
|
@@ -123,57 +139,111 @@ Ullo e la yiri naŋ taa noba k...`
|
|
| 123 |
|
| 124 |

|
| 125 |
|
|
|
|
|
|
|
| 126 |

|
| 127 |
|
| 128 |
### Results
|
| 129 |
|
| 130 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 131 |
-
|
| 132 |
-
| **2-gram** | 5,
|
| 133 |
-
| **2-gram** |
|
| 134 |
-
| **3-gram** |
|
| 135 |
-
| **3-gram** |
|
| 136 |
-
| **4-gram** |
|
| 137 |
-
| **4-gram** |
|
|
|
|
|
|
|
| 138 |
|
| 139 |
### Top 5 N-grams by Size
|
| 140 |
|
| 141 |
-
**2-grams:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
| Rank | N-gram | Count |
|
| 144 |
|------|--------|-------|
|
| 145 |
-
| 1 |
|
| 146 |
-
| 2 |
|
| 147 |
-
| 3 | `
|
| 148 |
-
| 4 | `
|
| 149 |
-
| 5 |
|
| 150 |
|
| 151 |
-
**
|
| 152 |
|
| 153 |
| Rank | N-gram | Count |
|
| 154 |
|------|--------|-------|
|
| 155 |
-
| 1 |
|
| 156 |
-
| 2 | `
|
| 157 |
-
| 3 |
|
| 158 |
-
| 4 |
|
| 159 |
-
| 5 |
|
| 160 |
|
| 161 |
-
**
|
| 162 |
|
| 163 |
| Rank | N-gram | Count |
|
| 164 |
|------|--------|-------|
|
| 165 |
-
| 1 | `
|
| 166 |
-
| 2 |
|
| 167 |
-
| 3 |
|
| 168 |
-
| 4 |
|
| 169 |
-
| 5 | `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
|
| 172 |
### Key Findings
|
| 173 |
|
| 174 |
-
- **Best Perplexity:** 2-gram with
|
| 175 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 176 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 177 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 178 |
|
| 179 |
---
|
|
@@ -181,55 +251,86 @@ Ullo e la yiri naŋ taa noba k...`
|
|
| 181 |
|
| 182 |

|
| 183 |
|
|
|
|
|
|
|
| 184 |

|
| 185 |
|
| 186 |
### Results
|
| 187 |
|
| 188 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 189 |
-
|
| 190 |
-
| **1** | 0.
|
| 191 |
-
| **1** |
|
| 192 |
-
| **2** | 0.
|
| 193 |
-
| **2** |
|
| 194 |
-
| **3** | 0.
|
| 195 |
-
| **3** | 0.
|
| 196 |
-
| **4** | 0.
|
| 197 |
-
| **4** | 0.
|
| 198 |
|
| 199 |
-
### Generated Text Samples
|
| 200 |
|
| 201 |
-
Below are text samples generated from each Markov chain model:
|
| 202 |
|
| 203 |
**Context Size 1:**
|
| 204 |
|
| 205 |
-
1.
|
| 206 |
-
2.
|
| 207 |
-
3. `a
|
| 208 |
|
| 209 |
**Context Size 2:**
|
| 210 |
|
| 211 |
-
1.
|
| 212 |
-
2.
|
| 213 |
-
3. `
|
| 214 |
|
| 215 |
**Context Size 3:**
|
| 216 |
|
| 217 |
-
1.
|
| 218 |
-
2. `
|
| 219 |
-
3.
|
| 220 |
|
| 221 |
**Context Size 4:**
|
| 222 |
|
| 223 |
-
1. `
|
| 224 |
-
2.
|
| 225 |
-
3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
|
| 228 |
### Key Findings
|
| 229 |
|
| 230 |
-
- **Best Predictability:** Context-4 with
|
| 231 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 232 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 233 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 234 |
|
| 235 |
---
|
|
@@ -245,26 +346,26 @@ Below are text samples generated from each Markov chain model:
|
|
| 245 |
|
| 246 |
| Metric | Value |
|
| 247 |
|--------|-------|
|
| 248 |
-
| Vocabulary Size |
|
| 249 |
-
| Total Tokens | 1,
|
| 250 |
-
| Mean Frequency | 32.
|
| 251 |
-
| Median Frequency |
|
| 252 |
-
| Frequency Std Dev |
|
| 253 |
|
| 254 |
### Most Common Words
|
| 255 |
|
| 256 |
| Rank | Word | Frequency |
|
| 257 |
|------|------|-----------|
|
| 258 |
-
| 1 | a | 77,
|
| 259 |
-
| 2 | la | 41,
|
| 260 |
-
| 3 | o | 29,
|
| 261 |
-
| 4 | naŋ | 24,
|
| 262 |
-
| 5 | da | 21,
|
| 263 |
-
| 6 | ka | 20,
|
| 264 |
-
| 7 | ba | 17,
|
| 265 |
-
| 8 | e | 16,
|
| 266 |
-
| 9 | poɔ | 14,
|
| 267 |
-
| 10 | ane | 12,
|
| 268 |
|
| 269 |
### Least Common Words (from vocabulary)
|
| 270 |
|
|
@@ -277,32 +378,32 @@ Below are text samples generated from each Markov chain model:
|
|
| 277 |
| 5 | jaʋ | 2 |
|
| 278 |
| 6 | daahe | 2 |
|
| 279 |
| 7 | tigrihi | 2 |
|
| 280 |
-
| 8 |
|
| 281 |
-
| 9 |
|
| 282 |
| 10 | ekewaolu | 2 |
|
| 283 |
|
| 284 |
### Zipf's Law Analysis
|
| 285 |
|
| 286 |
| Metric | Value |
|
| 287 |
|--------|-------|
|
| 288 |
-
| Zipf Coefficient | 1.
|
| 289 |
-
| R² (Goodness of Fit) | 0.
|
| 290 |
| Adherence Quality | **excellent** |
|
| 291 |
|
| 292 |
### Coverage Analysis
|
| 293 |
|
| 294 |
| Top N Words | Coverage |
|
| 295 |
|-------------|----------|
|
| 296 |
-
| Top 100 |
|
| 297 |
-
| Top 1,000 |
|
| 298 |
-
| Top 5,000 |
|
| 299 |
-
| Top 10,000 |
|
| 300 |
|
| 301 |
### Key Findings
|
| 302 |
|
| 303 |
-
- **Zipf Compliance:** R²=0.
|
| 304 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 305 |
-
- **Long Tail:**
|
| 306 |
|
| 307 |
---
|
| 308 |
## 5. Word Embeddings Evaluation
|
|
@@ -315,24 +416,114 @@ Below are text samples generated from each Markov chain model:
|
|
| 315 |
|
| 316 |

|
| 317 |
|
| 318 |
-
### Model Comparison
|
| 319 |
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
### Key Findings
|
| 328 |
|
| 329 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 330 |
-
- **
|
| 331 |
-
- **
|
| 332 |
-
- **Recommendation:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
---
|
| 335 |
-
##
|
| 336 |
|
| 337 |

|
| 338 |
|
|
@@ -340,11 +531,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 340 |
|
| 341 |
| Component | Recommended | Rationale |
|
| 342 |
|-----------|-------------|-----------|
|
| 343 |
-
| Tokenizer | **
|
| 344 |
-
| N-gram | **
|
| 345 |
-
| Markov | **Context-4** | Highest predictability (
|
| 346 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 347 |
|
|
|
|
| 348 |
---
|
| 349 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 350 |
|
|
@@ -534,7 +726,8 @@ If you use these models in your research, please cite:
|
|
| 534 |
author = {Kamali, Omar},
|
| 535 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 536 |
year = {2025},
|
| 537 |
-
|
|
|
|
| 538 |
url = {https://huggingface.co/wikilangs}
|
| 539 |
institution = {Omneity Labs}
|
| 540 |
}
|
|
@@ -550,7 +743,8 @@ MIT License - Free for academic and commercial use.
|
|
| 550 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 551 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 552 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 553 |
---
|
| 554 |
*Generated by Wikilangs Models Pipeline*
|
| 555 |
|
| 556 |
-
*Report Date:
|
|
|
|
| 1 |
---
|
| 2 |
language: dga
|
| 3 |
+
language_name: Southern Dagaare
|
| 4 |
language_family: atlantic_gur
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-atlantic_gur
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.080
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.8588
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
+
value: 0
|
| 43 |
+
generated: 2026-01-04
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Southern Dagaare - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Southern Dagaare** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 54 |
### Models & Assets
|
| 55 |
|
| 56 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 57 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 58 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 59 |
- Subword N-gram and Markov chains
|
| 60 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 61 |
- Language Vocabulary
|
| 62 |
- Language Statistics
|
| 63 |
+
|
| 64 |

|
| 65 |
|
| 66 |
### Analysis and Evaluation
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
| 77 |
|
|
|
|
| 80 |
|
| 81 |

|
| 82 |
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
### Results
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.655x | 3.66 | 0.0592% | 426,016 |
|
| 94 |
+
| **16k** | 3.850x | 3.85 | 0.0623% | 404,419 |
|
| 95 |
+
| **32k** | 3.987x | 3.99 | 0.0645% | 390,549 |
|
| 96 |
+
| **64k** | 4.080x 🏆 | 4.08 | 0.0660% | 381,660 |
|
| 97 |
|
| 98 |
### Tokenization Examples
|
| 99 |
|
| 100 |
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
|
| 102 |
+
**Sample 1:** `Lambussie e la tembile ane a Lambussie Karni desekyere teŋkpoŋ, desekyere naŋ be...`
|
| 103 |
|
| 104 |
| Vocab | Tokens | Count |
|
| 105 |
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁lambussie ▁e ▁la ▁tembile ▁ane ▁a ▁lambussie ▁kar ni ▁desekyere ... (+19 more)` | 29 |
|
| 107 |
+
| 16k | `▁lambussie ▁e ▁la ▁tembile ▁ane ▁a ▁lambussie ▁kar ni ▁desekyere ... (+19 more)` | 29 |
|
| 108 |
+
| 32k | `▁lambussie ▁e ▁la ▁tembile ▁ane ▁a ▁lambussie ▁karni ▁desekyere ▁teŋkpoŋ ... (+18 more)` | 28 |
|
| 109 |
+
| 64k | `▁lambussie ▁e ▁la ▁tembile ▁ane ▁a ▁lambussie ▁karni ▁desekyere ▁teŋkpoŋ ... (+18 more)` | 28 |
|
| 110 |
|
| 111 |
+
**Sample 2:** `Lugo e la dabaarãã ba naŋ maŋ ba wagre ŋa ba naŋ wa meɛrɛ dié, lugo maŋ taa la k...`
|
| 112 |
|
| 113 |
| Vocab | Tokens | Count |
|
| 114 |
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁lu go ▁e ▁la ▁da baa r ãã ▁ba ▁naŋ ... (+27 more)` | 37 |
|
| 116 |
+
| 16k | `▁lu go ▁e ▁la ▁da baa rãã ▁ba ▁naŋ ▁maŋ ... (+25 more)` | 35 |
|
| 117 |
+
| 32k | `▁lugo ▁e ▁la ▁da baa rãã ▁ba ▁naŋ ▁maŋ ▁ba ... (+21 more)` | 31 |
|
| 118 |
+
| 64k | `▁lugo ▁e ▁la ▁dabaarãã ▁ba ▁naŋ ▁maŋ ▁ba ▁wagre ▁ŋa ... (+18 more)` | 28 |
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
**Sample 3:** `Sheikh Osman Nuhu Sharubutu waa la a Ghana zaa Silaamabiiri wideɛrɛ. O dɔgebo be...`
|
| 121 |
|
| 122 |
| Vocab | Tokens | Count |
|
| 123 |
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁she ikh ▁os man ▁nuhu ▁shar ubu tu ▁waa ▁la ... (+18 more)` | 28 |
|
| 125 |
+
| 16k | `▁sheikh ▁osman ▁nuhu ▁shar ubu tu ▁waa ▁la ▁a ▁ghana ... (+14 more)` | 24 |
|
| 126 |
+
| 32k | `▁sheikh ▁osman ▁nuhu ▁shar ubutu ▁waa ▁la ▁a ▁ghana ▁zaa ... (+13 more)` | 23 |
|
| 127 |
+
| 64k | `▁sheikh ▁osman ▁nuhu ▁sharubutu ▁waa ▁la ▁a ▁ghana ▁zaa ▁silaamabiiri ... (+12 more)` | 22 |
|
| 128 |
|
| 129 |
|
| 130 |
### Key Findings
|
| 131 |
|
| 132 |
+
- **Best Compression:** 64k achieves 4.080x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.0592% unknown tokens
|
| 134 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
|
|
|
|
| 139 |
|
| 140 |

|
| 141 |
|
| 142 |
+

|
| 143 |
+
|
| 144 |

|
| 145 |
|
| 146 |
### Results
|
| 147 |
|
| 148 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 5,247 | 12.36 | 23,604 | 25.2% | 52.5% |
|
| 151 |
+
| **2-gram** | Subword | 261 🏆 | 8.03 | 3,102 | 67.0% | 99.0% |
|
| 152 |
+
| **3-gram** | Word | 15,091 | 13.88 | 40,759 | 12.7% | 34.8% |
|
| 153 |
+
| **3-gram** | Subword | 2,130 | 11.06 | 23,753 | 29.7% | 72.3% |
|
| 154 |
+
| **4-gram** | Word | 37,462 | 15.19 | 77,183 | 7.6% | 22.9% |
|
| 155 |
+
| **4-gram** | Subword | 10,952 | 13.42 | 113,607 | 15.0% | 44.1% |
|
| 156 |
+
| **5-gram** | Word | 33,178 | 15.02 | 59,664 | 7.6% | 22.1% |
|
| 157 |
+
| **5-gram** | Subword | 34,072 | 15.06 | 261,669 | 9.2% | 29.6% |
|
| 158 |
|
| 159 |
### Top 5 N-grams by Size
|
| 160 |
|
| 161 |
+
**2-grams (Word):**
|
| 162 |
+
|
| 163 |
+
| Rank | N-gram | Count |
|
| 164 |
+
|------|--------|-------|
|
| 165 |
+
| 1 | `la a` | 8,318 |
|
| 166 |
+
| 2 | `e la` | 8,255 |
|
| 167 |
+
| 3 | `ka o` | 5,097 |
|
| 168 |
+
| 4 | `naŋ be` | 4,526 |
|
| 169 |
+
| 5 | `o da` | 4,441 |
|
| 170 |
+
|
| 171 |
+
**3-grams (Word):**
|
| 172 |
+
|
| 173 |
+
| Rank | N-gram | Count |
|
| 174 |
+
|------|--------|-------|
|
| 175 |
+
| 1 | `naŋ be a` | 2,381 |
|
| 176 |
+
| 2 | `e la a` | 1,581 |
|
| 177 |
+
| 3 | `o e la` | 1,352 |
|
| 178 |
+
| 4 | `da e la` | 1,226 |
|
| 179 |
+
| 5 | `sommo yizie zaa` | 1,176 |
|
| 180 |
+
|
| 181 |
+
**4-grams (Word):**
|
| 182 |
+
|
| 183 |
+
| Rank | N-gram | Count |
|
| 184 |
+
|------|--------|-------|
|
| 185 |
+
| 1 | `sommo yizie zaa africa` | 1,004 |
|
| 186 |
+
| 2 | `o da e la` | 534 |
|
| 187 |
+
| 3 | `of the 4th republic` | 440 |
|
| 188 |
+
| 4 | `4th republic of ghana` | 439 |
|
| 189 |
+
| 5 | `parliament of the 4th` | 439 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
|
| 193 |
| Rank | N-gram | Count |
|
| 194 |
|------|--------|-------|
|
| 195 |
+
| 1 | `parliament of the 4th republic` | 438 |
|
| 196 |
+
| 2 | `the 4th republic of ghana` | 434 |
|
| 197 |
+
| 3 | `of the 4th republic of` | 434 |
|
| 198 |
+
| 4 | `4th republic of ghana zaa` | 348 |
|
| 199 |
+
| 5 | `republic of ghana zaa africa` | 341 |
|
| 200 |
|
| 201 |
+
**2-grams (Subword):**
|
| 202 |
|
| 203 |
| Rank | N-gram | Count |
|
| 204 |
|------|--------|-------|
|
| 205 |
+
| 1 | `a _` | 295,811 |
|
| 206 |
+
| 2 | `e _` | 179,385 |
|
| 207 |
+
| 3 | `_ a` | 141,327 |
|
| 208 |
+
| 4 | `_ n` | 88,607 |
|
| 209 |
+
| 5 | `a n` | 84,293 |
|
| 210 |
|
| 211 |
+
**3-grams (Subword):**
|
| 212 |
|
| 213 |
| Rank | N-gram | Count |
|
| 214 |
|------|--------|-------|
|
| 215 |
+
| 1 | `_ a _` | 75,684 |
|
| 216 |
+
| 2 | `_ l a` | 47,173 |
|
| 217 |
+
| 3 | `l a _` | 44,354 |
|
| 218 |
+
| 4 | `_ n a` | 42,956 |
|
| 219 |
+
| 5 | `a ŋ _` | 41,497 |
|
| 220 |
+
|
| 221 |
+
**4-grams (Subword):**
|
| 222 |
+
|
| 223 |
+
| Rank | N-gram | Count |
|
| 224 |
+
|------|--------|-------|
|
| 225 |
+
| 1 | `_ l a _` | 40,459 |
|
| 226 |
+
| 2 | `n a ŋ _` | 25,681 |
|
| 227 |
+
| 3 | `_ n a ŋ` | 24,499 |
|
| 228 |
+
| 4 | `_ d a _` | 21,223 |
|
| 229 |
+
| 5 | `_ k a _` | 20,083 |
|
| 230 |
+
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
+
|
| 233 |
+
| Rank | N-gram | Count |
|
| 234 |
+
|------|--------|-------|
|
| 235 |
+
| 1 | `_ n a ŋ _` | 24,351 |
|
| 236 |
+
| 2 | `e _ l a _` | 16,215 |
|
| 237 |
+
| 3 | `_ a n e _` | 12,136 |
|
| 238 |
+
| 4 | `g h a n a` | 10,185 |
|
| 239 |
+
| 5 | `_ g h a n` | 9,611 |
|
| 240 |
|
| 241 |
|
| 242 |
### Key Findings
|
| 243 |
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 261
|
| 245 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~30% of corpus
|
| 247 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
|
| 249 |
---
|
|
|
|
| 251 |
|
| 252 |

|
| 253 |
|
| 254 |
+

|
| 255 |
+
|
| 256 |

|
| 257 |
|
| 258 |
### Results
|
| 259 |
|
| 260 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.7877 | 1.726 | 5.30 | 76,185 | 21.2% |
|
| 263 |
+
| **1** | Subword | 0.9123 | 1.882 | 7.16 | 1,143 | 8.8% |
|
| 264 |
+
| **2** | Word | 0.2777 | 1.212 | 1.73 | 402,963 | 72.2% |
|
| 265 |
+
| **2** | Subword | 0.9272 | 1.902 | 5.67 | 8,182 | 7.3% |
|
| 266 |
+
| **3** | Word | 0.1241 | 1.090 | 1.24 | 697,461 | 87.6% |
|
| 267 |
+
| **3** | Subword | 0.8532 | 1.807 | 4.16 | 46,384 | 14.7% |
|
| 268 |
+
| **4** | Word | 0.0565 🏆 | 1.040 | 1.09 | 865,473 | 94.4% |
|
| 269 |
+
| **4** | Subword | 0.6504 | 1.570 | 2.74 | 193,130 | 35.0% |
|
| 270 |
|
| 271 |
+
### Generated Text Samples (Word-based)
|
| 272 |
|
| 273 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 274 |
|
| 275 |
**Context Size 1:**
|
| 276 |
|
| 277 |
+
1. `a dudu taa la taa la martha hyer spainunited states be la rev r b enfuomo`
|
| 278 |
+
2. `la 27 june how lucky philip dube akon kanye kanye west african universities african cinema hosts`
|
| 279 |
+
3. `o teŋkpoŋ geogarapi a 21 december ane o ba meŋ da eɛ bonwuoraa dagaaba naŋ be`
|
| 280 |
|
| 281 |
**Context Size 2:**
|
| 282 |
|
| 283 |
+
1. `la a ghana ports ane coastal eŋgyinia poɔ o da nyeε gyerema aŋa pɔge ko a paalikaara`
|
| 284 |
+
2. `e la desekyere ayi eŋɛ twifo atti morkwa desekyere a o south sɛŋ ne fumesua a o`
|
| 285 |
+
3. `ka o fãã a kyɛ a na toɔ di a kogi ne 14 391 vootuu ka lɛ`
|
| 286 |
|
| 287 |
**Context Size 3:**
|
| 288 |
|
| 289 |
+
1. `naŋ be a gaana paaloo mr hackman owusu agyeman la a diplomats mine naŋ baare knust aliu mahama`
|
| 290 |
+
2. `e la a is bolgatanga munisipal naŋ taa tensɔgɔ yɛlloŋ naŋ na baŋ pare pie ne anuu te`
|
| 291 |
+
3. `o e la neŋkpoŋ naŋ kaara a naasaala mine nimikpɛ kyaare ne a silla ane goryeo saŋa naŋ`
|
| 292 |
|
| 293 |
**Context Size 4:**
|
| 294 |
|
| 295 |
+
1. `o da e la business development officer of fonak technologies ltd and chief executive officer of the ...`
|
| 296 |
+
2. `of the 4th republic of ghana zaa africa parliament of the 4th republic of ghana zaa africa parliamen...`
|
| 297 |
+
3. `parliament of the 4th republic of ghana zaa africa parliament of the 4th republic of ghana zaa afric...`
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
### Generated Text Samples (Subword-based)
|
| 301 |
+
|
| 302 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 303 |
+
|
| 304 |
+
**Context Size 1:**
|
| 305 |
+
|
| 306 |
+
1. `_erwiamarles_a_l`
|
| 307 |
+
2. `anest,_nelica_a_`
|
| 308 |
+
3. `e_pra,_ssi_aaɡba`
|
| 309 |
+
|
| 310 |
+
**Context Size 2:**
|
| 311 |
+
|
| 312 |
+
1. `a_nund_te_8_me._o`
|
| 313 |
+
2. `e_a_e_a_tho/_ⓘ_in`
|
| 314 |
+
3. `_a_garebɔloolijew`
|
| 315 |
+
|
| 316 |
+
**Context Size 3:**
|
| 317 |
+
|
| 318 |
+
1. `_a_baŋ_bebiri_daga`
|
| 319 |
+
2. `_la_bare_poɔ._a_yu`
|
| 320 |
+
3. `la_kology._oble_ma`
|
| 321 |
+
|
| 322 |
+
**Context Size 4:**
|
| 323 |
+
|
| 324 |
+
1. `_la_doŋ_kaa_naŋ_naŋ`
|
| 325 |
+
2. `naŋ_be_a_kaŋa_naŋ_b`
|
| 326 |
+
3. `_naŋ_be_tigiri_a_de`
|
| 327 |
|
| 328 |
|
| 329 |
### Key Findings
|
| 330 |
|
| 331 |
+
- **Best Predictability:** Context-4 (word) with 94.4% predictability
|
| 332 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (193,130 contexts)
|
| 334 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
|
| 336 |
---
|
|
|
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 33,219 |
|
| 350 |
+
| Total Tokens | 1,069,636 |
|
| 351 |
+
| Mean Frequency | 32.20 |
|
| 352 |
+
| Median Frequency | 4 |
|
| 353 |
+
| Frequency Std Dev | 610.71 |
|
| 354 |
|
| 355 |
### Most Common Words
|
| 356 |
|
| 357 |
| Rank | Word | Frequency |
|
| 358 |
|------|------|-----------|
|
| 359 |
+
| 1 | a | 77,430 |
|
| 360 |
+
| 2 | la | 41,562 |
|
| 361 |
+
| 3 | o | 29,242 |
|
| 362 |
+
| 4 | naŋ | 24,554 |
|
| 363 |
+
| 5 | da | 21,295 |
|
| 364 |
+
| 6 | ka | 20,388 |
|
| 365 |
+
| 7 | ba | 17,329 |
|
| 366 |
+
| 8 | e | 16,396 |
|
| 367 |
+
| 9 | poɔ | 14,743 |
|
| 368 |
+
| 10 | ane | 12,198 |
|
| 369 |
|
| 370 |
### Least Common Words (from vocabulary)
|
| 371 |
|
|
|
|
| 378 |
| 5 | jaʋ | 2 |
|
| 379 |
| 6 | daahe | 2 |
|
| 380 |
| 7 | tigrihi | 2 |
|
| 381 |
+
| 8 | pileehi | 2 |
|
| 382 |
+
| 9 | revive | 2 |
|
| 383 |
| 10 | ekewaolu | 2 |
|
| 384 |
|
| 385 |
### Zipf's Law Analysis
|
| 386 |
|
| 387 |
| Metric | Value |
|
| 388 |
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 1.1395 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.997636 |
|
| 391 |
| Adherence Quality | **excellent** |
|
| 392 |
|
| 393 |
### Coverage Analysis
|
| 394 |
|
| 395 |
| Top N Words | Coverage |
|
| 396 |
|-------------|----------|
|
| 397 |
+
| Top 100 | 51.3% |
|
| 398 |
+
| Top 1,000 | 75.0% |
|
| 399 |
+
| Top 5,000 | 88.7% |
|
| 400 |
+
| Top 10,000 | 93.4% |
|
| 401 |
|
| 402 |
### Key Findings
|
| 403 |
|
| 404 |
+
- **Zipf Compliance:** R²=0.9976 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 51.3% of corpus
|
| 406 |
+
- **Long Tail:** 23,219 words needed for remaining 6.6% coverage
|
| 407 |
|
| 408 |
---
|
| 409 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 416 |
|
| 417 |

|
| 418 |
|
|
|
|
| 419 |
|
| 420 |
+
### 5.1 Cross-Lingual Alignment
|
| 421 |
+
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
### 5.2 Model Comparison
|
| 428 |
+
|
| 429 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.8588 🏆 | 0.3392 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.7947 | 0.2830 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.5119 | 0.2439 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.8588 | 0.3417 | 0.0440 | 0.3200 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.7947 | 0.2829 | 0.1180 | 0.4400 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.5119 | 0.2497 | 0.2020 | 0.5080 |
|
| 437 |
|
| 438 |
### Key Findings
|
| 439 |
|
| 440 |
+
- **Best Isotropy:** mono_32d with 0.8588 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.2901. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 20.2% R@1 in cross-lingual retrieval.
|
| 443 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
+
|
| 445 |
+
---
|
| 446 |
+
## 6. Morphological Analysis (Experimental)
|
| 447 |
+
|
| 448 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
+
|
| 450 |
+
### 6.1 Productivity & Complexity
|
| 451 |
+
|
| 452 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
+
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **-0.253** | Low formulaic content | - |
|
| 456 |
+
|
| 457 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
+
|
| 459 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 460 |
+
|
| 461 |
+
#### Productive Prefixes
|
| 462 |
+
| Prefix | Examples |
|
| 463 |
+
|--------|----------|
|
| 464 |
+
|
| 465 |
+
#### Productive Suffixes
|
| 466 |
+
| Suffix | Examples |
|
| 467 |
+
|--------|----------|
|
| 468 |
+
| `-e` | service, kpeɛmine, dɔre |
|
| 469 |
+
| `-re` | dɔre, core, sefaare |
|
| 470 |
+
| `-ng` | providing, serving, keeling |
|
| 471 |
+
|
| 472 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 473 |
+
|
| 474 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 475 |
+
|
| 476 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 477 |
+
|------|----------|------------------|----------|
|
| 478 |
+
| `aare` | 1.84x | 72 contexts | zaare, daare, gaare |
|
| 479 |
+
| `igyi` | 2.52x | 15 contexts | rigyiŋ, firigyi, irigyiŋ |
|
| 480 |
+
| `aalo` | 1.78x | 43 contexts | gaalo, maalo, saalo |
|
| 481 |
+
| `atio` | 2.19x | 20 contexts | matio, nation, station |
|
| 482 |
+
| `eɛre` | 1.75x | 39 contexts | jeɛre, weɛre, neɛre |
|
| 483 |
+
| `paal` | 1.62x | 50 contexts | paali, paale, paalo |
|
| 484 |
+
| `tion` | 1.99x | 22 contexts | motion, nation, action |
|
| 485 |
+
| `aale` | 1.53x | 47 contexts | laale, waale, paale |
|
| 486 |
+
| `aloŋ` | 2.09x | 16 contexts | baloŋ, zaloŋ, yaloŋ |
|
| 487 |
+
| `yaar` | 1.73x | 28 contexts | yaari, yaaro, yaara |
|
| 488 |
+
| `rigy` | 2.15x | 14 contexts | rigyiŋ, firigyi, irigyiŋ |
|
| 489 |
+
| `irig` | 2.40x | 9 contexts | irigiŋ, irigin, firigyi |
|
| 490 |
+
|
| 491 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 492 |
+
|
| 493 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 494 |
+
|
| 495 |
+
*No significant affix co-occurrences detected.*
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 499 |
+
|
| 500 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 501 |
+
|
| 502 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 503 |
+
|------|-----------------|------------|------|
|
| 504 |
+
| pɔgesarre | **`pɔgesar-re`** | 4.5 | `pɔgesar` |
|
| 505 |
+
| lomboring | **`lombori-ng`** | 4.5 | `lombori` |
|
| 506 |
+
| counselling | **`counselli-ng`** | 1.5 | `counselli` |
|
| 507 |
+
| processing | **`processi-ng`** | 1.5 | `processi` |
|
| 508 |
+
| containing | **`containi-ng`** | 1.5 | `containi` |
|
| 509 |
+
| sasefaare | **`sasefaa-re`** | 1.5 | `sasefaa` |
|
| 510 |
+
| schoolboarding | **`schoolboardi-ng`** | 1.5 | `schoolboardi` |
|
| 511 |
+
| parodying | **`parodyi-ng`** | 1.5 | `parodyi` |
|
| 512 |
+
| transforming | **`transformi-ng`** | 1.5 | `transformi` |
|
| 513 |
+
| derbyshire | **`derbyshi-re`** | 1.5 | `derbyshi` |
|
| 514 |
+
| dankwasere | **`dankwase-re`** | 1.5 | `dankwase` |
|
| 515 |
+
| bonyɔgere | **`bonyɔge-re`** | 1.5 | `bonyɔge` |
|
| 516 |
+
| sɛgebikparre | **`sɛgebikpar-re`** | 1.5 | `sɛgebikpar` |
|
| 517 |
+
| nimbitɔɔre | **`nimbitɔɔ-re`** | 1.5 | `nimbitɔɔ` |
|
| 518 |
+
| chongqing | **`chongqi-ng`** | 1.5 | `chongqi` |
|
| 519 |
+
|
| 520 |
+
### 6.6 Linguistic Interpretation
|
| 521 |
+
|
| 522 |
+
> **Automated Insight:**
|
| 523 |
+
The language Southern Dagaare shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 524 |
|
| 525 |
---
|
| 526 |
+
## 7. Summary & Recommendations
|
| 527 |
|
| 528 |

|
| 529 |
|
|
|
|
| 531 |
|
| 532 |
| Component | Recommended | Rationale |
|
| 533 |
|-----------|-------------|-----------|
|
| 534 |
+
| Tokenizer | **64k BPE** | Best compression (4.08x) |
|
| 535 |
+
| N-gram | **2-gram** | Lowest perplexity (261) |
|
| 536 |
+
| Markov | **Context-4** | Highest predictability (94.4%) |
|
| 537 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 538 |
|
| 539 |
+
|
| 540 |
---
|
| 541 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 542 |
|
|
|
|
| 726 |
author = {Kamali, Omar},
|
| 727 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 728 |
year = {2025},
|
| 729 |
+
doi = {10.5281/zenodo.18073153},
|
| 730 |
+
publisher = {Zenodo},
|
| 731 |
url = {https://huggingface.co/wikilangs}
|
| 732 |
institution = {Omneity Labs}
|
| 733 |
}
|
|
|
|
| 743 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 744 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 745 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 746 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 747 |
---
|
| 748 |
*Generated by Wikilangs Models Pipeline*
|
| 749 |
|
| 750 |
+
*Report Date: 2026-01-04 02:08:16*
|
models/embeddings/aligned/dga_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6b3631e0fff8545f469b01e2d1bf05841ab0a5045a798fc48069ca41d6ddbb5
|
| 3 |
+
size 1039825434
|
models/embeddings/aligned/dga_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "dga", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/dga_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:50f4789b7295eb1824c65a5fc955a71d61ee81554fdd3b77dd40c4df7a61ccd0
|
| 3 |
+
size 65664
|
models/embeddings/aligned/dga_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "dga",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 7985,
|
| 7 |
+
"vocab_size": 15210
|
| 8 |
+
}
|
models/embeddings/aligned/dga_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:101c1d2e7f82529eaf1f624fc1f9a8869242fb730c465d01982e7b740f585935
|
| 3 |
+
size 260144154
|
models/embeddings/aligned/dga_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "dga", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/dga_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd3094746af59172715cb6615ae22d62cc55fe723a0d16231abd61b92c73bb80
|
| 3 |
+
size 4224
|
models/embeddings/aligned/dga_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "dga",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 7985,
|
| 7 |
+
"vocab_size": 15210
|
| 8 |
+
}
|
models/embeddings/aligned/dga_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:29f3396a864b1787c765f6c869438d427adba6e4948ae28a99867bbd4d90e2fb
|
| 3 |
+
size 520037914
|
models/embeddings/aligned/dga_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "dga", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/dga_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cea0c0561c8e8d885a8feafb46ff0dedc92937ebd78baa60de23058af684584f
|
| 3 |
+
size 16512
|
models/embeddings/aligned/dga_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "dga",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 7985,
|
| 7 |
+
"vocab_size": 15210
|
| 8 |
+
}
|
models/embeddings/monolingual/dga_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6b3631e0fff8545f469b01e2d1bf05841ab0a5045a798fc48069ca41d6ddbb5
|
| 3 |
+
size 1039825434
|
models/embeddings/monolingual/dga_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 15210
|
| 15 |
}
|
models/embeddings/monolingual/dga_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:101c1d2e7f82529eaf1f624fc1f9a8869242fb730c465d01982e7b740f585935
|
| 3 |
+
size 260144154
|
models/embeddings/monolingual/dga_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 15210
|
| 15 |
}
|
models/embeddings/monolingual/dga_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:29f3396a864b1787c765f6c869438d427adba6e4948ae28a99867bbd4d90e2fb
|
| 3 |
+
size 520037914
|
models/embeddings/monolingual/dga_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 15210
|
| 15 |
}
|
models/subword_markov/dga_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7e8de70a919223af91ca351c9ed325b8e2c0ee422d41a69e6f1bef4ded50698
|
| 3 |
+
size 67833
|
models/subword_markov/dga_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
+
"unique_contexts": 1143,
|
| 6 |
+
"total_transitions": 5878828
|
| 7 |
}
|
models/subword_markov/dga_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3599bce6aa7738f80109f4d74bf545ab75787a2610ffae7b7763601b36ebee98
|
| 3 |
+
size 381039
|
models/subword_markov/dga_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
+
"unique_contexts": 8182,
|
| 6 |
+
"total_transitions": 5875008
|
| 7 |
}
|
models/subword_markov/dga_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5026e56875be843fc1fbfe1a36536b26cb2c9c9cdfb98e4fa07636aaa6914e2e
|
| 3 |
+
size 1490586
|
models/subword_markov/dga_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
+
"unique_contexts": 46384,
|
| 6 |
+
"total_transitions": 5871188
|
| 7 |
}
|
models/subword_markov/dga_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:01808c29d38deae3defece7b7d6b0efeac4a0c57fe5d5b1ca86a2beeeffbe8ce
|
| 3 |
+
size 4121587
|
models/subword_markov/dga_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
+
"unique_contexts": 193130,
|
| 6 |
+
"total_transitions": 5867368
|
| 7 |
}
|
models/subword_ngram/dga_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:20a83d1edcf4a2ddadc72fb861c65adeed34b4d63a0d4609cca706b147f4f503
|
| 3 |
+
size 41340
|
models/subword_ngram/dga_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
+
"unique_ngrams": 3102,
|
| 6 |
+
"total_ngrams": 5878828
|
| 7 |
}
|
models/subword_ngram/dga_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5511afecfbb618e55a0e6dff14ea074b950aef7de5b692c6e8dfcccaf518e4df
|
| 3 |
+
size 288911
|
models/subword_ngram/dga_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
+
"unique_ngrams": 23753,
|
| 6 |
+
"total_ngrams": 5875008
|
| 7 |
}
|
models/subword_ngram/dga_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd207924ad307a120e4f9d7355057e3e6066c566c73b67fe1f5b9f8ef7c24647
|
| 3 |
+
size 1287525
|
models/subword_ngram/dga_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dga",
|
| 5 |
+
"unique_ngrams": 113607,
|
| 6 |
+
"total_ngrams": 5871188
|
| 7 |
}
|
models/subword_ngram/dga_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:888e7f1e2521411b8a80a6c6daf7570775e9c0ca432daa7cd95d56f130243a84
|
| 3 |
+
size 3003073
|
models/subword_ngram/dga_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "dga",
|
| 5 |
+
"unique_ngrams": 261669,
|
| 6 |
+
"total_ngrams": 5867368
|
| 7 |
+
}
|
models/tokenizer/dga_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a34e8b91d3051420bfb8c4ba27722b99d278a4978aef5762486618f61b6c9cb
|
| 3 |
+
size 504858
|
models/tokenizer/dga_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/dga_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:826110fdb06bda52c24e93da98774bf4100a3debe58994bc1c86d2a34ed118db
|
| 3 |
+
size 770121
|
models/tokenizer/dga_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/dga_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1c5171a543ae4e21cd31b367763559376ac764272d2694e29a4337d23bc699fe
|
| 3 |
+
size 1346382
|
models/tokenizer/dga_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/dga_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f812eb174504a46a3df3548ce2b36943ee8709f15da981d20e06bcd090f36da8
|
| 3 |
+
size 372649
|
models/tokenizer/dga_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/dga_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb56e1a5ae64d3c05131485aff4c1f555eb471d296f0e0dfd449a3ac2a4307d8
|
| 3 |
+
size 566914
|
models/vocabulary/dga_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "dga",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
| 10 |
-
"top_10000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
-
"total_documents":
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "dga",
|
| 3 |
+
"vocabulary_size": 33219,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.06853071308718046,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.49309902585584753,
|
| 9 |
+
"top_1000": 0.7210536107323922,
|
| 10 |
+
"top_5000": 0.8525060013355275,
|
| 11 |
+
"top_10000": 0.89766138896653
|
| 12 |
},
|
| 13 |
+
"hapax_count": 43033,
|
| 14 |
+
"hapax_ratio": 0.564352410428579,
|
| 15 |
+
"total_documents": 3820
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/dga_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:868b4ce1ba4db3c0a6352234f8049f7c35a4e8393e16dde6bd5fbacdf7fcd405
|
| 3 |
+
size 2926334
|
models/word_markov/dga_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "dga",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "dga",
|
| 5 |
+
"unique_contexts": 76185,
|
| 6 |
+
"total_transitions": 1108849
|
| 7 |
}
|
models/word_markov/dga_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac10270f52d31bd0366bc6e60776fc1eeb7019c509213cb098107ff1ffa4e9ff
|
| 3 |
+
size 7424049
|
models/word_markov/dga_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "dga",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "dga",
|
| 5 |
+
"unique_contexts": 402963,
|
| 6 |
+
"total_transitions": 1105029
|
| 7 |
}
|