omarkamali commited on
Commit
5d95b76
·
verified ·
1 Parent(s): d191af0

Upload all models and assets for dga (latest)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +326 -132
  3. models/embeddings/aligned/dga_128d.bin +3 -0
  4. models/embeddings/aligned/dga_128d.meta.json +1 -0
  5. models/embeddings/aligned/dga_128d.projection.npy +3 -0
  6. models/embeddings/aligned/dga_128d_metadata.json +8 -0
  7. models/embeddings/aligned/dga_32d.bin +3 -0
  8. models/embeddings/aligned/dga_32d.meta.json +1 -0
  9. models/embeddings/aligned/dga_32d.projection.npy +3 -0
  10. models/embeddings/aligned/dga_32d_metadata.json +8 -0
  11. models/embeddings/aligned/dga_64d.bin +3 -0
  12. models/embeddings/aligned/dga_64d.meta.json +1 -0
  13. models/embeddings/aligned/dga_64d.projection.npy +3 -0
  14. models/embeddings/aligned/dga_64d_metadata.json +8 -0
  15. models/embeddings/monolingual/dga_128d.bin +2 -2
  16. models/embeddings/monolingual/dga_128d_metadata.json +5 -3
  17. models/embeddings/monolingual/dga_32d.bin +2 -2
  18. models/embeddings/monolingual/dga_32d_metadata.json +5 -3
  19. models/embeddings/monolingual/dga_64d.bin +2 -2
  20. models/embeddings/monolingual/dga_64d_metadata.json +5 -3
  21. models/subword_markov/dga_markov_ctx1_subword.parquet +2 -2
  22. models/subword_markov/dga_markov_ctx1_subword_metadata.json +2 -2
  23. models/subword_markov/dga_markov_ctx2_subword.parquet +2 -2
  24. models/subword_markov/dga_markov_ctx2_subword_metadata.json +2 -2
  25. models/subword_markov/dga_markov_ctx3_subword.parquet +2 -2
  26. models/subword_markov/dga_markov_ctx3_subword_metadata.json +2 -2
  27. models/subword_markov/dga_markov_ctx4_subword.parquet +2 -2
  28. models/subword_markov/dga_markov_ctx4_subword_metadata.json +2 -2
  29. models/subword_ngram/dga_2gram_subword.parquet +2 -2
  30. models/subword_ngram/dga_2gram_subword_metadata.json +2 -2
  31. models/subword_ngram/dga_3gram_subword.parquet +2 -2
  32. models/subword_ngram/dga_3gram_subword_metadata.json +2 -2
  33. models/subword_ngram/dga_4gram_subword.parquet +2 -2
  34. models/subword_ngram/dga_4gram_subword_metadata.json +2 -2
  35. models/subword_ngram/dga_5gram_subword.parquet +3 -0
  36. models/subword_ngram/dga_5gram_subword_metadata.json +7 -0
  37. models/tokenizer/dga_tokenizer_16k.model +2 -2
  38. models/tokenizer/dga_tokenizer_16k.vocab +0 -0
  39. models/tokenizer/dga_tokenizer_32k.model +2 -2
  40. models/tokenizer/dga_tokenizer_32k.vocab +0 -0
  41. models/tokenizer/dga_tokenizer_64k.model +2 -2
  42. models/tokenizer/dga_tokenizer_64k.vocab +0 -0
  43. models/tokenizer/dga_tokenizer_8k.model +2 -2
  44. models/tokenizer/dga_tokenizer_8k.vocab +0 -0
  45. models/vocabulary/dga_vocabulary.parquet +2 -2
  46. models/vocabulary/dga_vocabulary_metadata.json +10 -9
  47. models/word_markov/dga_markov_ctx1_word.parquet +2 -2
  48. models/word_markov/dga_markov_ctx1_word_metadata.json +2 -2
  49. models/word_markov/dga_markov_ctx2_word.parquet +2 -2
  50. models/word_markov/dga_markov_ctx2_word_metadata.json +2 -2
.gitattributes CHANGED
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
 
 
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
42
+ visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  language: dga
3
- language_name: DGA
4
  language_family: atlantic_gur
5
  tags:
6
  - wikilangs
@@ -10,11 +10,21 @@ tags:
10
  - n-gram
11
  - markov
12
  - wikipedia
 
 
 
 
 
 
 
 
 
 
13
  - monolingual
14
  - family-atlantic_gur
15
  license: mit
16
  library_name: wikilangs
17
- pipeline_tag: feature-extraction
18
  datasets:
19
  - omarkamali/wikipedia-monthly
20
  dataset_info:
@@ -23,20 +33,20 @@ dataset_info:
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
- value: 3.554
27
  - name: best_isotropy
28
  type: isotropy
29
- value: 0.8544
30
  - name: vocabulary_size
31
  type: vocab
32
- value: 40845
33
- generated: 2025-12-30
34
  ---
35
 
36
- # DGA - Wikilangs Models
37
  ## Comprehensive Research Report & Full Ablation Study
38
 
39
- This repository contains NLP models trained and evaluated by Wikilangs, specifically on **DGA** Wikipedia data.
40
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
41
 
42
  ## 📋 Repository Contents
@@ -44,12 +54,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
44
  ### Models & Assets
45
 
46
  - Tokenizers (8k, 16k, 32k, 64k)
47
- - N-gram models (2, 3, 4-gram)
48
- - Markov chains (context of 1, 2, 3 and 4)
49
  - Subword N-gram and Markov chains
50
- - Embeddings in various sizes and dimensions
51
  - Language Vocabulary
52
  - Language Statistics
 
53
  ![Performance Dashboard](visualizations/performance_dashboard.png)
54
 
55
  ### Analysis and Evaluation
@@ -59,7 +70,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
59
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
60
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
61
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
62
- - [6. Summary & Recommendations](#6-summary--recommendations)
 
63
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
64
  - [Visualizations Index](#visualizations-index)
65
 
@@ -68,53 +80,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
68
 
69
  ![Tokenizer Compression](visualizations/tokenizer_compression.png)
70
 
 
 
 
 
 
 
71
  ### Results
72
 
73
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
74
  |------------|-------------|---------------|----------|--------------|
75
- | **8k** | 3.196x | 3.16 | 0.0394% | 662,329 |
76
- | **16k** | 3.356x | 3.32 | 0.0414% | 630,808 |
77
- | **32k** | 3.472x | 3.43 | 0.0428% | 609,791 |
78
- | **64k** | 3.554x 🏆 | 3.51 | 0.0438% | 595,723 |
79
 
80
  ### Tokenization Examples
81
 
82
  Below are sample sentences tokenized with each vocabulary size:
83
 
84
- **Sample 1:** `Tembilee kaŋa na be Africa, Ka oneŋ Ghana la laŋ dankyinne`
85
 
86
  | Vocab | Tokens | Count |
87
  |-------|--------|-------|
88
- | 8k | `▁tem bileekaŋanabeafrica ,kao neŋ ... (+6 more)` | 16 |
89
- | 16k | `▁tem bileekaŋanabeafrica ,kao neŋ ... (+6 more)` | 16 |
90
- | 32k | `▁tembileekaŋanabeafrica ,kao neŋghana ... (+4 more)` | 14 |
91
- | 64k | `▁tembileekaŋanabeafrica ,kaoneŋghanala ... (+2 more)` | 12 |
92
 
93
- **Sample 2:** `Zaguo e la tembiili kaŋa naŋ be Jirapa paaloŋ poɔ. Koɔbo ane done guoluu la ba y...`
94
 
95
  | Vocab | Tokens | Count |
96
  |-------|--------|-------|
97
- | 8k | `▁zag uo ▁e ▁la ▁tem bi i likaŋa ▁naŋ ... (+16 more)` | 26 |
98
- | 16k | `▁zag uo ▁e ▁la ▁tem bii likaŋa ▁naŋ ▁be ... (+14 more)` | 24 |
99
- | 32k | `▁zag uo ▁e ▁la ▁tem bii likaŋa ▁naŋ ▁be ... (+13 more)` | 23 |
100
- | 64k | `▁zaguo ▁e ▁la ▁tem bii li kaŋa ▁naŋ ▁bejirapa ... (+11 more)` | 21 |
101
-
102
- **Sample 3:** `Ullo e la yie bile kaŋ naŋ be Upper West Region.
103
 
104
- Ullo e la yiri naŋ taa noba k...`
105
 
106
  | Vocab | Tokens | Count |
107
  |-------|--------|-------|
108
- | 8k | `▁ul loe ▁layiebile ▁kaŋ ▁naŋbeupper ... (+32 more)` | 42 |
109
- | 16k | `▁ul lo elayie ▁bilekaŋnaŋbeupper ... (+31 more)` | 41 |
110
- | 32k | `▁ulloelayie ▁bilekaŋnaŋbeupperwest ... (+27 more)` | 37 |
111
- | 64k | `▁ulloelayiebilekaŋnaŋbeupperwest ... (+26 more)` | 36 |
112
 
113
 
114
  ### Key Findings
115
 
116
- - **Best Compression:** 64k achieves 3.554x compression
117
- - **Lowest UNK Rate:** 8k with 0.0394% unknown tokens
118
  - **Trade-off:** Larger vocabularies improve compression but increase model size
119
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
120
 
@@ -123,57 +139,111 @@ Ullo e la yiri naŋ taa noba k...`
123
 
124
  ![N-gram Perplexity](visualizations/ngram_perplexity.png)
125
 
 
 
126
  ![N-gram Coverage](visualizations/ngram_coverage.png)
127
 
128
  ### Results
129
 
130
- | N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
131
- |--------|------------|---------|----------------|------------------|-------------------|
132
- | **2-gram** | 5,975 🏆 | 12.54 | 38,594 | 27.3% | 51.9% |
133
- | **2-gram** | 414 🏆 | 8.69 | 4,448 | 55.6% | 97.7% |
134
- | **3-gram** | 13,170 | 13.68 | 71,585 | 21.4% | 41.1% |
135
- | **3-gram** | 3,526 | 11.78 | 38,114 | 23.3% | 63.1% |
136
- | **4-gram** | 28,677 | 14.81 | 138,854 | 18.3% | 33.1% |
137
- | **4-gram** | 17,399 | 14.09 | 189,158 | 12.7% | 38.7% |
 
 
138
 
139
  ### Top 5 N-grams by Size
140
 
141
- **2-grams:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  | Rank | N-gram | Count |
144
  |------|--------|-------|
145
- | 1 | `: /` | 18,314 |
146
- | 2 | `/ /` | 18,305 |
147
- | 3 | `https :` | 11,430 |
148
- | 4 | `gbuli :` | 11,117 |
149
- | 5 | `. com` | 9,398 |
150
 
151
- **3-grams:**
152
 
153
  | Rank | N-gram | Count |
154
  |------|--------|-------|
155
- | 1 | `: / /` | 18,287 |
156
- | 2 | `https : /` | 11,430 |
157
- | 3 | `. com /` | 8,145 |
158
- | 4 | `/ www .` | 6,911 |
159
- | 5 | `/ / www` | 6,909 |
160
 
161
- **4-grams:**
162
 
163
  | Rank | N-gram | Count |
164
  |------|--------|-------|
165
- | 1 | `https : / /` | 11,430 |
166
- | 2 | `: / / www` | 6,908 |
167
- | 3 | `/ / www .` | 6,907 |
168
- | 4 | `. https : /` | 6,433 |
169
- | 5 | `archive . org /` | 4,005 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
 
171
 
172
  ### Key Findings
173
 
174
- - **Best Perplexity:** 2-gram with 414
175
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
176
- - **Coverage:** Top-1000 patterns cover ~39% of corpus
177
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
178
 
179
  ---
@@ -181,55 +251,86 @@ Ullo e la yiri naŋ taa noba k...`
181
 
182
  ![Markov Entropy](visualizations/markov_entropy.png)
183
 
 
 
184
  ![Markov Branching](visualizations/markov_branching.png)
185
 
186
  ### Results
187
 
188
- | Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
189
- |---------|-------------|------------|------------------|-----------------|----------------|
190
- | **1** | 0.5605 | 1.475 | 4.56 | 110,912 | 44.0% |
191
- | **1** | 1.0147 | 2.021 | 8.63 | 1,148 | 0.0% |
192
- | **2** | 0.3023 | 1.233 | 1.85 | 505,122 | 69.8% |
193
- | **2** | 1.1781 | 2.263 | 7.58 | 9,899 | 0.0% |
194
- | **3** | 0.1398 | 1.102 | 1.30 | 935,548 | 86.0% |
195
- | **3** | 0.9413 | 1.920 | 4.43 | 75,047 | 5.9% |
196
- | **4** | 0.0660 🏆 | 1.047 | 1.12 | 1,213,249 | 93.4% |
197
- | **4** | 0.6668 🏆 | 1.588 | 2.67 | 332,542 | 33.3% |
198
 
199
- ### Generated Text Samples
200
 
201
- Below are text samples generated from each Markov chain model:
202
 
203
  **Context Size 1:**
204
 
205
- 1. `. https : / en . co . archive . https : / o da ba`
206
- 2. `/ www . http : / www . g . com / / mps / mps`
207
- 3. `a yi 1969 2007 entɛnɛte zagekpoŋpaatiare - nkrumah aboahnational democratic congress2016 - christi...`
208
 
209
  **Context Size 2:**
210
 
211
- 1. `: / / doi / 10 . 1independentbawa mamshie ali4 , 13825 . 7 ( 4 )`
212
- 2. `/ / www . premiumtimesng . com / books ? id = 100267 baba da paale la`
213
- 3. `https : / / northpad . ng / entertainment / movies / emelia - brobbey - abeiku`
214
 
215
  **Context Size 3:**
216
 
217
- 1. `: / / www . bellanaija . com / pages / 2020 / 06 / c_137803189 . htm`
218
- 2. `https : / / en . wikipedia . org / web / 20230324002112 / https : / /`
219
- 3. `. com / books ? id = 97 gɔɔloŋ asibiti gɔɔloŋ e la sankrite yelbie poɔ te seŋ`
220
 
221
  **Context Size 4:**
222
 
223
- 1. `https : / / www . ghanaweb . com / ghanahomepage / sportsarchive / i - have - built`
224
- 2. `: / / www . modernghana . com / news / 1016574 / voter - register - hajia -`
225
- 3. `/ / www . birimnorth . ghanadistricts . gov . gh / index . php ? option = com_content`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
 
227
 
228
  ### Key Findings
229
 
230
- - **Best Predictability:** Context-4 with 93.4% predictability
231
  - **Branching Factor:** Decreases with context size (more deterministic)
232
- - **Memory Trade-off:** Larger contexts require more storage (332,542 contexts)
233
  - **Recommendation:** Context-3 or Context-4 for text generation
234
 
235
  ---
@@ -245,26 +346,26 @@ Below are text samples generated from each Markov chain model:
245
 
246
  | Metric | Value |
247
  |--------|-------|
248
- | Vocabulary Size | 40,845 |
249
- | Total Tokens | 1,334,061 |
250
- | Mean Frequency | 32.66 |
251
- | Median Frequency | 3 |
252
- | Frequency Std Dev | 571.47 |
253
 
254
  ### Most Common Words
255
 
256
  | Rank | Word | Frequency |
257
  |------|------|-----------|
258
- | 1 | a | 77,980 |
259
- | 2 | la | 41,636 |
260
- | 3 | o | 29,377 |
261
- | 4 | naŋ | 24,628 |
262
- | 5 | da | 21,300 |
263
- | 6 | ka | 20,399 |
264
- | 7 | ba | 17,358 |
265
- | 8 | e | 16,509 |
266
- | 9 | poɔ | 14,690 |
267
- | 10 | ane | 12,209 |
268
 
269
  ### Least Common Words (from vocabulary)
270
 
@@ -277,32 +378,32 @@ Below are text samples generated from each Markov chain model:
277
  | 5 | jaʋ | 2 |
278
  | 6 | daahe | 2 |
279
  | 7 | tigrihi | 2 |
280
- | 8 | dglw | 2 |
281
- | 9 | pileehi | 2 |
282
  | 10 | ekewaolu | 2 |
283
 
284
  ### Zipf's Law Analysis
285
 
286
  | Metric | Value |
287
  |--------|-------|
288
- | Zipf Coefficient | 1.1521 |
289
- | R² (Goodness of Fit) | 0.997705 |
290
  | Adherence Quality | **excellent** |
291
 
292
  ### Coverage Analysis
293
 
294
  | Top N Words | Coverage |
295
  |-------------|----------|
296
- | Top 100 | 47.4% |
297
- | Top 1,000 | 73.4% |
298
- | Top 5,000 | 87.5% |
299
- | Top 10,000 | 92.3% |
300
 
301
  ### Key Findings
302
 
303
- - **Zipf Compliance:** R²=0.9977 indicates excellent adherence to Zipf's law
304
- - **High Frequency Dominance:** Top 100 words cover 47.4% of corpus
305
- - **Long Tail:** 30,845 words needed for remaining 7.7% coverage
306
 
307
  ---
308
  ## 5. Word Embeddings Evaluation
@@ -315,24 +416,114 @@ Below are text samples generated from each Markov chain model:
315
 
316
  ![t-SNE Sentences](visualizations/tsne_sentences.png)
317
 
318
- ### Model Comparison
319
 
320
- | Model | Vocab Size | Dimension | Avg Norm | Std Norm | Isotropy |
321
- |-------|------------|-----------|----------|----------|----------|
322
- | **mono_32d** | 15,785 | 32 | 3.653 | 0.840 | 0.8544 🏆 |
323
- | **mono_64d** | 15,785 | 64 | 4.073 | 0.797 | 0.7925 |
324
- | **mono_128d** | 15,785 | 128 | 4.340 | 0.752 | 0.5386 |
325
- | **embeddings_enhanced** | 0 | 0 | 0.000 | 0.000 | 0.0000 |
 
 
 
 
 
 
 
 
 
 
 
326
 
327
  ### Key Findings
328
 
329
- - **Best Isotropy:** mono_32d with 0.8544 (more uniform distribution)
330
- - **Dimension Trade-off:** Higher dimensions capture more semantics but reduce isotropy
331
- - **Vocabulary Coverage:** All models cover 15,785 words
332
- - **Recommendation:** 100d for balanced semantic capture and efficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
 
334
  ---
335
- ## 6. Summary & Recommendations
336
 
337
  ![Performance Dashboard](visualizations/performance_dashboard.png)
338
 
@@ -340,11 +531,12 @@ Below are text samples generated from each Markov chain model:
340
 
341
  | Component | Recommended | Rationale |
342
  |-----------|-------------|-----------|
343
- | Tokenizer | **32k BPE** | Best compression (3.55x) with low UNK rate |
344
- | N-gram | **5-gram** | Lowest perplexity (414) |
345
- | Markov | **Context-4** | Highest predictability (93.4%) |
346
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
347
 
 
348
  ---
349
  ## Appendix: Metrics Glossary & Interpretation Guide
350
 
@@ -534,7 +726,8 @@ If you use these models in your research, please cite:
534
  author = {Kamali, Omar},
535
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
536
  year = {2025},
537
- publisher = {HuggingFace},
 
538
  url = {https://huggingface.co/wikilangs}
539
  institution = {Omneity Labs}
540
  }
@@ -550,7 +743,8 @@ MIT License - Free for academic and commercial use.
550
  - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
551
  - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
552
  - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
 
553
  ---
554
  *Generated by Wikilangs Models Pipeline*
555
 
556
- *Report Date: 2025-12-30 08:23:36*
 
1
  ---
2
  language: dga
3
+ language_name: Southern Dagaare
4
  language_family: atlantic_gur
5
  tags:
6
  - wikilangs
 
10
  - n-gram
11
  - markov
12
  - wikipedia
13
+ - feature-extraction
14
+ - sentence-similarity
15
+ - tokenization
16
+ - n-grams
17
+ - markov-chain
18
+ - text-mining
19
+ - fasttext
20
+ - babelvec
21
+ - vocabulous
22
+ - vocabulary
23
  - monolingual
24
  - family-atlantic_gur
25
  license: mit
26
  library_name: wikilangs
27
+ pipeline_tag: text-generation
28
  datasets:
29
  - omarkamali/wikipedia-monthly
30
  dataset_info:
 
33
  metrics:
34
  - name: best_compression_ratio
35
  type: compression
36
+ value: 4.080
37
  - name: best_isotropy
38
  type: isotropy
39
+ value: 0.8588
40
  - name: vocabulary_size
41
  type: vocab
42
+ value: 0
43
+ generated: 2026-01-04
44
  ---
45
 
46
+ # Southern Dagaare - Wikilangs Models
47
  ## Comprehensive Research Report & Full Ablation Study
48
 
49
+ This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Southern Dagaare** Wikipedia data.
50
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
51
 
52
  ## 📋 Repository Contents
 
54
  ### Models & Assets
55
 
56
  - Tokenizers (8k, 16k, 32k, 64k)
57
+ - N-gram models (2, 3, 4, 5-gram)
58
+ - Markov chains (context of 1, 2, 3, 4 and 5)
59
  - Subword N-gram and Markov chains
60
+ - Embeddings in various sizes and dimensions (aligned and unaligned)
61
  - Language Vocabulary
62
  - Language Statistics
63
+
64
  ![Performance Dashboard](visualizations/performance_dashboard.png)
65
 
66
  ### Analysis and Evaluation
 
70
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
71
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
72
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
73
+ - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
74
+ - [7. Summary & Recommendations](#7-summary--recommendations)
75
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
76
  - [Visualizations Index](#visualizations-index)
77
 
 
80
 
81
  ![Tokenizer Compression](visualizations/tokenizer_compression.png)
82
 
83
+ ![Tokenizer Fertility](visualizations/tokenizer_fertility.png)
84
+
85
+ ![Tokenizer OOV](visualizations/tokenizer_oov.png)
86
+
87
+ ![Total Tokens](visualizations/tokenizer_total_tokens.png)
88
+
89
  ### Results
90
 
91
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
92
  |------------|-------------|---------------|----------|--------------|
93
+ | **8k** | 3.655x | 3.66 | 0.0592% | 426,016 |
94
+ | **16k** | 3.850x | 3.85 | 0.0623% | 404,419 |
95
+ | **32k** | 3.987x | 3.99 | 0.0645% | 390,549 |
96
+ | **64k** | 4.080x 🏆 | 4.08 | 0.0660% | 381,660 |
97
 
98
  ### Tokenization Examples
99
 
100
  Below are sample sentences tokenized with each vocabulary size:
101
 
102
+ **Sample 1:** `Lambussie e la tembile ane a Lambussie Karni desekyere teŋkpoŋ, desekyere naŋ be...`
103
 
104
  | Vocab | Tokens | Count |
105
  |-------|--------|-------|
106
+ | 8k | `▁lambussie ▁elatembileanea ▁lambussiekar ni desekyere ... (+19 more)` | 29 |
107
+ | 16k | `▁lambussie ▁elatembileanea ▁lambussiekar ni desekyere ... (+19 more)` | 29 |
108
+ | 32k | `▁lambussieelatembileane ▁alambussiekarni ▁desekyereteŋkpoŋ ... (+18 more)` | 28 |
109
+ | 64k | `▁lambussieelatembileane ▁alambussiekarnidesekyereteŋkpoŋ ... (+18 more)` | 28 |
110
 
111
+ **Sample 2:** `Lugo e la dabaarãã ba naŋ maŋ ba wagre ŋa ba naŋ wa meɛrɛ dié, lugo maŋ taa la k...`
112
 
113
  | Vocab | Tokens | Count |
114
  |-------|--------|-------|
115
+ | 8k | `▁lu go ▁e ▁la ▁da baa r ããba ▁naŋ ... (+27 more)` | 37 |
116
+ | 16k | `▁lu go ▁e ▁la ▁da baa rããba ▁naŋ ▁maŋ ... (+25 more)` | 35 |
117
+ | 32k | `▁lugo ▁e ▁la ▁da baa rããba ▁naŋ ▁maŋ ▁ba ... (+21 more)` | 31 |
118
+ | 64k | `▁lugo ▁e ▁la ▁dabaarããba ▁naŋ ▁maŋba ▁wagre ▁ŋa ... (+18 more)` | 28 |
 
 
119
 
120
+ **Sample 3:** `Sheikh Osman Nuhu Sharubutu waa la a Ghana zaa Silaamabiiri wideɛrɛ. O dɔgebo be...`
121
 
122
  | Vocab | Tokens | Count |
123
  |-------|--------|-------|
124
+ | 8k | `▁she ikhos mannuhushar ubu tuwaala ... (+18 more)` | 28 |
125
+ | 16k | `▁sheikhosmannuhushar ubu tu waalaaghana ... (+14 more)` | 24 |
126
+ | 32k | `▁sheikhosmannuhushar ubutuwaalaaghanazaa ... (+13 more)` | 23 |
127
+ | 64k | `▁sheikhosmannuhusharubutuwaalaaghanazaasilaamabiiri ... (+12 more)` | 22 |
128
 
129
 
130
  ### Key Findings
131
 
132
+ - **Best Compression:** 64k achieves 4.080x compression
133
+ - **Lowest UNK Rate:** 8k with 0.0592% unknown tokens
134
  - **Trade-off:** Larger vocabularies improve compression but increase model size
135
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
136
 
 
139
 
140
  ![N-gram Perplexity](visualizations/ngram_perplexity.png)
141
 
142
+ ![N-gram Unique](visualizations/ngram_unique.png)
143
+
144
  ![N-gram Coverage](visualizations/ngram_coverage.png)
145
 
146
  ### Results
147
 
148
+ | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
149
+ |--------|---------|------------|---------|----------------|------------------|-------------------|
150
+ | **2-gram** | Word | 5,247 | 12.36 | 23,604 | 25.2% | 52.5% |
151
+ | **2-gram** | Subword | 261 🏆 | 8.03 | 3,102 | 67.0% | 99.0% |
152
+ | **3-gram** | Word | 15,091 | 13.88 | 40,759 | 12.7% | 34.8% |
153
+ | **3-gram** | Subword | 2,130 | 11.06 | 23,753 | 29.7% | 72.3% |
154
+ | **4-gram** | Word | 37,462 | 15.19 | 77,183 | 7.6% | 22.9% |
155
+ | **4-gram** | Subword | 10,952 | 13.42 | 113,607 | 15.0% | 44.1% |
156
+ | **5-gram** | Word | 33,178 | 15.02 | 59,664 | 7.6% | 22.1% |
157
+ | **5-gram** | Subword | 34,072 | 15.06 | 261,669 | 9.2% | 29.6% |
158
 
159
  ### Top 5 N-grams by Size
160
 
161
+ **2-grams (Word):**
162
+
163
+ | Rank | N-gram | Count |
164
+ |------|--------|-------|
165
+ | 1 | `la a` | 8,318 |
166
+ | 2 | `e la` | 8,255 |
167
+ | 3 | `ka o` | 5,097 |
168
+ | 4 | `naŋ be` | 4,526 |
169
+ | 5 | `o da` | 4,441 |
170
+
171
+ **3-grams (Word):**
172
+
173
+ | Rank | N-gram | Count |
174
+ |------|--------|-------|
175
+ | 1 | `naŋ be a` | 2,381 |
176
+ | 2 | `e la a` | 1,581 |
177
+ | 3 | `o e la` | 1,352 |
178
+ | 4 | `da e la` | 1,226 |
179
+ | 5 | `sommo yizie zaa` | 1,176 |
180
+
181
+ **4-grams (Word):**
182
+
183
+ | Rank | N-gram | Count |
184
+ |------|--------|-------|
185
+ | 1 | `sommo yizie zaa africa` | 1,004 |
186
+ | 2 | `o da e la` | 534 |
187
+ | 3 | `of the 4th republic` | 440 |
188
+ | 4 | `4th republic of ghana` | 439 |
189
+ | 5 | `parliament of the 4th` | 439 |
190
+
191
+ **5-grams (Word):**
192
 
193
  | Rank | N-gram | Count |
194
  |------|--------|-------|
195
+ | 1 | `parliament of the 4th republic` | 438 |
196
+ | 2 | `the 4th republic of ghana` | 434 |
197
+ | 3 | `of the 4th republic of` | 434 |
198
+ | 4 | `4th republic of ghana zaa` | 348 |
199
+ | 5 | `republic of ghana zaa africa` | 341 |
200
 
201
+ **2-grams (Subword):**
202
 
203
  | Rank | N-gram | Count |
204
  |------|--------|-------|
205
+ | 1 | `a _` | 295,811 |
206
+ | 2 | `e _` | 179,385 |
207
+ | 3 | `_ a` | 141,327 |
208
+ | 4 | `_ n` | 88,607 |
209
+ | 5 | `a n` | 84,293 |
210
 
211
+ **3-grams (Subword):**
212
 
213
  | Rank | N-gram | Count |
214
  |------|--------|-------|
215
+ | 1 | `_ a _` | 75,684 |
216
+ | 2 | `_ l a` | 47,173 |
217
+ | 3 | `l a _` | 44,354 |
218
+ | 4 | `_ n a` | 42,956 |
219
+ | 5 | `a ŋ _` | 41,497 |
220
+
221
+ **4-grams (Subword):**
222
+
223
+ | Rank | N-gram | Count |
224
+ |------|--------|-------|
225
+ | 1 | `_ l a _` | 40,459 |
226
+ | 2 | `n a ŋ _` | 25,681 |
227
+ | 3 | `_ n a ŋ` | 24,499 |
228
+ | 4 | `_ d a _` | 21,223 |
229
+ | 5 | `_ k a _` | 20,083 |
230
+
231
+ **5-grams (Subword):**
232
+
233
+ | Rank | N-gram | Count |
234
+ |------|--------|-------|
235
+ | 1 | `_ n a ŋ _` | 24,351 |
236
+ | 2 | `e _ l a _` | 16,215 |
237
+ | 3 | `_ a n e _` | 12,136 |
238
+ | 4 | `g h a n a` | 10,185 |
239
+ | 5 | `_ g h a n` | 9,611 |
240
 
241
 
242
  ### Key Findings
243
 
244
+ - **Best Perplexity:** 2-gram (subword) with 261
245
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
246
+ - **Coverage:** Top-1000 patterns cover ~30% of corpus
247
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
248
 
249
  ---
 
251
 
252
  ![Markov Entropy](visualizations/markov_entropy.png)
253
 
254
+ ![Markov Contexts](visualizations/markov_contexts.png)
255
+
256
  ![Markov Branching](visualizations/markov_branching.png)
257
 
258
  ### Results
259
 
260
+ | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
261
+ |---------|---------|-------------|------------|------------------|-----------------|----------------|
262
+ | **1** | Word | 0.7877 | 1.726 | 5.30 | 76,185 | 21.2% |
263
+ | **1** | Subword | 0.9123 | 1.882 | 7.16 | 1,143 | 8.8% |
264
+ | **2** | Word | 0.2777 | 1.212 | 1.73 | 402,963 | 72.2% |
265
+ | **2** | Subword | 0.9272 | 1.902 | 5.67 | 8,182 | 7.3% |
266
+ | **3** | Word | 0.1241 | 1.090 | 1.24 | 697,461 | 87.6% |
267
+ | **3** | Subword | 0.8532 | 1.807 | 4.16 | 46,384 | 14.7% |
268
+ | **4** | Word | 0.0565 🏆 | 1.040 | 1.09 | 865,473 | 94.4% |
269
+ | **4** | Subword | 0.6504 | 1.570 | 2.74 | 193,130 | 35.0% |
270
 
271
+ ### Generated Text Samples (Word-based)
272
 
273
+ Below are text samples generated from each word-based Markov chain model:
274
 
275
  **Context Size 1:**
276
 
277
+ 1. `a dudu taa la taa la martha hyer spainunited states be la rev r b enfuomo`
278
+ 2. `la 27 june how lucky philip dube akon kanye kanye west african universities african cinema hosts`
279
+ 3. `o teŋkpoŋ geogarapi a 21 december ane o ba meŋ da bonwuoraa dagaaba naŋ be`
280
 
281
  **Context Size 2:**
282
 
283
+ 1. `la a ghana ports ane coastal eŋgyinia poɔ o da nyeε gyerema aŋa pɔge ko a paalikaara`
284
+ 2. `e la desekyere ayi eŋɛ twifo atti morkwa desekyere a o south sɛŋ ne fumesua a o`
285
+ 3. `ka o fãã a kyɛ a na toɔ di a kogi ne 14 391 vootuu ka lɛ`
286
 
287
  **Context Size 3:**
288
 
289
+ 1. `naŋ be a gaana paaloo mr hackman owusu agyeman la a diplomats mine naŋ baare knust aliu mahama`
290
+ 2. `e la a is bolgatanga munisipal naŋ taa tensɔgɔ yɛlloŋ naŋ na baŋ pare pie ne anuu te`
291
+ 3. `o e la neŋkpoŋ naŋ kaara a naasaala mine nimikpɛ kyaare ne a silla ane goryeo saŋa naŋ`
292
 
293
  **Context Size 4:**
294
 
295
+ 1. `o da e la business development officer of fonak technologies ltd and chief executive officer of the ...`
296
+ 2. `of the 4th republic of ghana zaa africa parliament of the 4th republic of ghana zaa africa parliamen...`
297
+ 3. `parliament of the 4th republic of ghana zaa africa parliament of the 4th republic of ghana zaa afric...`
298
+
299
+
300
+ ### Generated Text Samples (Subword-based)
301
+
302
+ Below are text samples generated from each subword-based Markov chain model:
303
+
304
+ **Context Size 1:**
305
+
306
+ 1. `_erwiamarles_a_l`
307
+ 2. `anest,_nelica_a_`
308
+ 3. `e_pra,_ssi_aaɡba`
309
+
310
+ **Context Size 2:**
311
+
312
+ 1. `a_nund_te_8_me._o`
313
+ 2. `e_a_e_a_tho/_ⓘ_in`
314
+ 3. `_a_garebɔloolijew`
315
+
316
+ **Context Size 3:**
317
+
318
+ 1. `_a_baŋ_bebiri_daga`
319
+ 2. `_la_bare_poɔ._a_yu`
320
+ 3. `la_kology._oble_ma`
321
+
322
+ **Context Size 4:**
323
+
324
+ 1. `_la_doŋ_kaa_naŋ_naŋ`
325
+ 2. `naŋ_be_a_kaŋa_naŋ_b`
326
+ 3. `_naŋ_be_tigiri_a_de`
327
 
328
 
329
  ### Key Findings
330
 
331
+ - **Best Predictability:** Context-4 (word) with 94.4% predictability
332
  - **Branching Factor:** Decreases with context size (more deterministic)
333
+ - **Memory Trade-off:** Larger contexts require more storage (193,130 contexts)
334
  - **Recommendation:** Context-3 or Context-4 for text generation
335
 
336
  ---
 
346
 
347
  | Metric | Value |
348
  |--------|-------|
349
+ | Vocabulary Size | 33,219 |
350
+ | Total Tokens | 1,069,636 |
351
+ | Mean Frequency | 32.20 |
352
+ | Median Frequency | 4 |
353
+ | Frequency Std Dev | 610.71 |
354
 
355
  ### Most Common Words
356
 
357
  | Rank | Word | Frequency |
358
  |------|------|-----------|
359
+ | 1 | a | 77,430 |
360
+ | 2 | la | 41,562 |
361
+ | 3 | o | 29,242 |
362
+ | 4 | naŋ | 24,554 |
363
+ | 5 | da | 21,295 |
364
+ | 6 | ka | 20,388 |
365
+ | 7 | ba | 17,329 |
366
+ | 8 | e | 16,396 |
367
+ | 9 | poɔ | 14,743 |
368
+ | 10 | ane | 12,198 |
369
 
370
  ### Least Common Words (from vocabulary)
371
 
 
378
  | 5 | jaʋ | 2 |
379
  | 6 | daahe | 2 |
380
  | 7 | tigrihi | 2 |
381
+ | 8 | pileehi | 2 |
382
+ | 9 | revive | 2 |
383
  | 10 | ekewaolu | 2 |
384
 
385
  ### Zipf's Law Analysis
386
 
387
  | Metric | Value |
388
  |--------|-------|
389
+ | Zipf Coefficient | 1.1395 |
390
+ | R² (Goodness of Fit) | 0.997636 |
391
  | Adherence Quality | **excellent** |
392
 
393
  ### Coverage Analysis
394
 
395
  | Top N Words | Coverage |
396
  |-------------|----------|
397
+ | Top 100 | 51.3% |
398
+ | Top 1,000 | 75.0% |
399
+ | Top 5,000 | 88.7% |
400
+ | Top 10,000 | 93.4% |
401
 
402
  ### Key Findings
403
 
404
+ - **Zipf Compliance:** R²=0.9976 indicates excellent adherence to Zipf's law
405
+ - **High Frequency Dominance:** Top 100 words cover 51.3% of corpus
406
+ - **Long Tail:** 23,219 words needed for remaining 6.6% coverage
407
 
408
  ---
409
  ## 5. Word Embeddings Evaluation
 
416
 
417
  ![t-SNE Sentences](visualizations/tsne_sentences.png)
418
 
 
419
 
420
+ ### 5.1 Cross-Lingual Alignment
421
+
422
+ ![Alignment Quality](visualizations/embedding_alignment_quality.png)
423
+
424
+ ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
425
+
426
+
427
+ ### 5.2 Model Comparison
428
+
429
+ | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
430
+ |-------|-----------|----------|------------------|---------------|----------------|
431
+ | **mono_32d** | 32 | 0.8588 🏆 | 0.3392 | N/A | N/A |
432
+ | **mono_64d** | 64 | 0.7947 | 0.2830 | N/A | N/A |
433
+ | **mono_128d** | 128 | 0.5119 | 0.2439 | N/A | N/A |
434
+ | **aligned_32d** | 32 | 0.8588 | 0.3417 | 0.0440 | 0.3200 |
435
+ | **aligned_64d** | 64 | 0.7947 | 0.2829 | 0.1180 | 0.4400 |
436
+ | **aligned_128d** | 128 | 0.5119 | 0.2497 | 0.2020 | 0.5080 |
437
 
438
  ### Key Findings
439
 
440
+ - **Best Isotropy:** mono_32d with 0.8588 (more uniform distribution)
441
+ - **Semantic Density:** Average pairwise similarity of 0.2901. Lower values indicate better semantic separation.
442
+ - **Alignment Quality:** Aligned models achieve up to 20.2% R@1 in cross-lingual retrieval.
443
+ - **Recommendation:** 128d aligned for best cross-lingual performance
444
+
445
+ ---
446
+ ## 6. Morphological Analysis (Experimental)
447
+
448
+ This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
449
+
450
+ ### 6.1 Productivity & Complexity
451
+
452
+ | Metric | Value | Interpretation | Recommendation |
453
+ |--------|-------|----------------|----------------|
454
+ | Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
455
+ | Idiomaticity Gap | **-0.253** | Low formulaic content | - |
456
+
457
+ ### 6.2 Affix Inventory (Productive Units)
458
+
459
+ These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
460
+
461
+ #### Productive Prefixes
462
+ | Prefix | Examples |
463
+ |--------|----------|
464
+
465
+ #### Productive Suffixes
466
+ | Suffix | Examples |
467
+ |--------|----------|
468
+ | `-e` | service, kpeɛmine, dɔre |
469
+ | `-re` | dɔre, core, sefaare |
470
+ | `-ng` | providing, serving, keeling |
471
+
472
+ ### 6.3 Bound Stems (Lexical Roots)
473
+
474
+ Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
475
+
476
+ | Stem | Cohesion | Substitutability | Examples |
477
+ |------|----------|------------------|----------|
478
+ | `aare` | 1.84x | 72 contexts | zaare, daare, gaare |
479
+ | `igyi` | 2.52x | 15 contexts | rigyiŋ, firigyi, irigyiŋ |
480
+ | `aalo` | 1.78x | 43 contexts | gaalo, maalo, saalo |
481
+ | `atio` | 2.19x | 20 contexts | matio, nation, station |
482
+ | `eɛre` | 1.75x | 39 contexts | jeɛre, weɛre, neɛre |
483
+ | `paal` | 1.62x | 50 contexts | paali, paale, paalo |
484
+ | `tion` | 1.99x | 22 contexts | motion, nation, action |
485
+ | `aale` | 1.53x | 47 contexts | laale, waale, paale |
486
+ | `aloŋ` | 2.09x | 16 contexts | baloŋ, zaloŋ, yaloŋ |
487
+ | `yaar` | 1.73x | 28 contexts | yaari, yaaro, yaara |
488
+ | `rigy` | 2.15x | 14 contexts | rigyiŋ, firigyi, irigyiŋ |
489
+ | `irig` | 2.40x | 9 contexts | irigiŋ, irigin, firigyi |
490
+
491
+ ### 6.4 Affix Compatibility (Co-occurrence)
492
+
493
+ This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
494
+
495
+ *No significant affix co-occurrences detected.*
496
+
497
+
498
+ ### 6.5 Recursive Morpheme Segmentation
499
+
500
+ Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
501
+
502
+ | Word | Suggested Split | Confidence | Stem |
503
+ |------|-----------------|------------|------|
504
+ | pɔgesarre | **`pɔgesar-re`** | 4.5 | `pɔgesar` |
505
+ | lomboring | **`lombori-ng`** | 4.5 | `lombori` |
506
+ | counselling | **`counselli-ng`** | 1.5 | `counselli` |
507
+ | processing | **`processi-ng`** | 1.5 | `processi` |
508
+ | containing | **`containi-ng`** | 1.5 | `containi` |
509
+ | sasefaare | **`sasefaa-re`** | 1.5 | `sasefaa` |
510
+ | schoolboarding | **`schoolboardi-ng`** | 1.5 | `schoolboardi` |
511
+ | parodying | **`parodyi-ng`** | 1.5 | `parodyi` |
512
+ | transforming | **`transformi-ng`** | 1.5 | `transformi` |
513
+ | derbyshire | **`derbyshi-re`** | 1.5 | `derbyshi` |
514
+ | dankwasere | **`dankwase-re`** | 1.5 | `dankwase` |
515
+ | bonyɔgere | **`bonyɔge-re`** | 1.5 | `bonyɔge` |
516
+ | sɛgebikparre | **`sɛgebikpar-re`** | 1.5 | `sɛgebikpar` |
517
+ | nimbitɔɔre | **`nimbitɔɔ-re`** | 1.5 | `nimbitɔɔ` |
518
+ | chongqing | **`chongqi-ng`** | 1.5 | `chongqi` |
519
+
520
+ ### 6.6 Linguistic Interpretation
521
+
522
+ > **Automated Insight:**
523
+ The language Southern Dagaare shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
524
 
525
  ---
526
+ ## 7. Summary & Recommendations
527
 
528
  ![Performance Dashboard](visualizations/performance_dashboard.png)
529
 
 
531
 
532
  | Component | Recommended | Rationale |
533
  |-----------|-------------|-----------|
534
+ | Tokenizer | **64k BPE** | Best compression (4.08x) |
535
+ | N-gram | **2-gram** | Lowest perplexity (261) |
536
+ | Markov | **Context-4** | Highest predictability (94.4%) |
537
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
538
 
539
+
540
  ---
541
  ## Appendix: Metrics Glossary & Interpretation Guide
542
 
 
726
  author = {Kamali, Omar},
727
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
728
  year = {2025},
729
+ doi = {10.5281/zenodo.18073153},
730
+ publisher = {Zenodo},
731
  url = {https://huggingface.co/wikilangs}
732
  institution = {Omneity Labs}
733
  }
 
743
  - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
744
  - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
745
  - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
746
+ - 🤝 Sponsor: [Featherless AI](https://featherless.ai)
747
  ---
748
  *Generated by Wikilangs Models Pipeline*
749
 
750
+ *Report Date: 2026-01-04 02:08:16*
models/embeddings/aligned/dga_128d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6b3631e0fff8545f469b01e2d1bf05841ab0a5045a798fc48069ca41d6ddbb5
3
+ size 1039825434
models/embeddings/aligned/dga_128d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "dga", "dim": 128, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/dga_128d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50f4789b7295eb1824c65a5fc955a71d61ee81554fdd3b77dd40c4df7a61ccd0
3
+ size 65664
models/embeddings/aligned/dga_128d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "dga",
3
+ "dimension": 128,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 7985,
7
+ "vocab_size": 15210
8
+ }
models/embeddings/aligned/dga_32d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:101c1d2e7f82529eaf1f624fc1f9a8869242fb730c465d01982e7b740f585935
3
+ size 260144154
models/embeddings/aligned/dga_32d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "dga", "dim": 32, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/dga_32d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd3094746af59172715cb6615ae22d62cc55fe723a0d16231abd61b92c73bb80
3
+ size 4224
models/embeddings/aligned/dga_32d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "dga",
3
+ "dimension": 32,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 7985,
7
+ "vocab_size": 15210
8
+ }
models/embeddings/aligned/dga_64d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29f3396a864b1787c765f6c869438d427adba6e4948ae28a99867bbd4d90e2fb
3
+ size 520037914
models/embeddings/aligned/dga_64d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "dga", "dim": 64, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/dga_64d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cea0c0561c8e8d885a8feafb46ff0dedc92937ebd78baa60de23058af684584f
3
+ size 16512
models/embeddings/aligned/dga_64d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "dga",
3
+ "dimension": 64,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 7985,
7
+ "vocab_size": 15210
8
+ }
models/embeddings/monolingual/dga_128d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7509b16c6a1db795616de5a687579f0267cd55400806146ebbfe23b2a6d8f297
3
- size 1040426603
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6b3631e0fff8545f469b01e2d1bf05841ab0a5045a798fc48069ca41d6ddbb5
3
+ size 1039825434
models/embeddings/monolingual/dga_128d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 128,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 128,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 15785
13
  }
 
3
  "dimension": 128,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 128
13
  },
14
+ "vocab_size": 15210
15
  }
models/embeddings/monolingual/dga_32d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:862e8483779b7224adc263c4c32f80bb8f0dc89346b4a8cfdd45d099f0430193
3
- size 260303723
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:101c1d2e7f82529eaf1f624fc1f9a8869242fb730c465d01982e7b740f585935
3
+ size 260144154
models/embeddings/monolingual/dga_32d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 32,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 32,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 15785
13
  }
 
3
  "dimension": 32,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 32
13
  },
14
+ "vocab_size": 15210
15
  }
models/embeddings/monolingual/dga_64d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:faaff3cdeef7a76b81e7498d5eb82465a34ce7a38b590ccb1a5445bffbd06514
3
- size 520344683
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29f3396a864b1787c765f6c869438d427adba6e4948ae28a99867bbd4d90e2fb
3
+ size 520037914
models/embeddings/monolingual/dga_64d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 64,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 64,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 15785
13
  }
 
3
  "dimension": 64,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 64
13
  },
14
+ "vocab_size": 15210
15
  }
models/subword_markov/dga_markov_ctx1_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:07c24bc03d2999772af4c9745355efe203472de45ad5f349aa0cc8cd6156fb1a
3
- size 81060
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7e8de70a919223af91ca351c9ed325b8e2c0ee422d41a69e6f1bef4ded50698
3
+ size 67833
models/subword_markov/dga_markov_ctx1_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "dga",
5
- "unique_contexts": 1148,
6
- "total_transitions": 7959013
7
  }
 
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "dga",
5
+ "unique_contexts": 1143,
6
+ "total_transitions": 5878828
7
  }
models/subword_markov/dga_markov_ctx2_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bf941de32e0df793abaef699e301d13eb4023e24e890e01414ca3ebda3697799
3
- size 572662
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3599bce6aa7738f80109f4d74bf545ab75787a2610ffae7b7763601b36ebee98
3
+ size 381039
models/subword_markov/dga_markov_ctx2_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "dga",
5
- "unique_contexts": 9899,
6
- "total_transitions": 7955160
7
  }
 
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "dga",
5
+ "unique_contexts": 8182,
6
+ "total_transitions": 5875008
7
  }
models/subword_markov/dga_markov_ctx3_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d5bd7c429d0f0635b00f49c078b1e4fce9dd6c30ff4a614d27a0532abae6563f
3
- size 2220058
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5026e56875be843fc1fbfe1a36536b26cb2c9c9cdfb98e4fa07636aaa6914e2e
3
+ size 1490586
models/subword_markov/dga_markov_ctx3_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "dga",
5
- "unique_contexts": 75047,
6
- "total_transitions": 7951307
7
  }
 
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "dga",
5
+ "unique_contexts": 46384,
6
+ "total_transitions": 5871188
7
  }
models/subword_markov/dga_markov_ctx4_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e574d35b50270c25b7bd9ed81e900819439048790abe395c7af08ce0b3b472d1
3
- size 6646209
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01808c29d38deae3defece7b7d6b0efeac4a0c57fe5d5b1ca86a2beeeffbe8ce
3
+ size 4121587
models/subword_markov/dga_markov_ctx4_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "dga",
5
- "unique_contexts": 332542,
6
- "total_transitions": 7947454
7
  }
 
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "dga",
5
+ "unique_contexts": 193130,
6
+ "total_transitions": 5867368
7
  }
models/subword_ngram/dga_2gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7467ad1bbdee47d2e747687cb934192f0f44c6afbe55e161f910c81d2bc20743
3
- size 58133
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20a83d1edcf4a2ddadc72fb861c65adeed34b4d63a0d4609cca706b147f4f503
3
+ size 41340
models/subword_ngram/dga_2gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "dga",
5
- "unique_ngrams": 4448,
6
- "total_ngrams": 7959013
7
  }
 
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "dga",
5
+ "unique_ngrams": 3102,
6
+ "total_ngrams": 5878828
7
  }
models/subword_ngram/dga_3gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:84fcd4fb5b56554f194dd0224de34e80518c4d52e7dba5e4c9b5dad0ded264bd
3
- size 461841
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5511afecfbb618e55a0e6dff14ea074b950aef7de5b692c6e8dfcccaf518e4df
3
+ size 288911
models/subword_ngram/dga_3gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "dga",
5
- "unique_ngrams": 38114,
6
- "total_ngrams": 7955160
7
  }
 
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "dga",
5
+ "unique_ngrams": 23753,
6
+ "total_ngrams": 5875008
7
  }
models/subword_ngram/dga_4gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2019d612b5a5c51fe72836d6abbd1c862ce2913fa72bb070212fada37b7ad396
3
- size 2081564
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd207924ad307a120e4f9d7355057e3e6066c566c73b67fe1f5b9f8ef7c24647
3
+ size 1287525
models/subword_ngram/dga_4gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "dga",
5
- "unique_ngrams": 189158,
6
- "total_ngrams": 7951307
7
  }
 
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "dga",
5
+ "unique_ngrams": 113607,
6
+ "total_ngrams": 5871188
7
  }
models/subword_ngram/dga_5gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:888e7f1e2521411b8a80a6c6daf7570775e9c0ca432daa7cd95d56f130243a84
3
+ size 3003073
models/subword_ngram/dga_5gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 5,
3
+ "variant": "subword",
4
+ "language": "dga",
5
+ "unique_ngrams": 261669,
6
+ "total_ngrams": 5867368
7
+ }
models/tokenizer/dga_tokenizer_16k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:04292c72d179ce67422f703caa41e18226a29d592998052882ca08730b90939c
3
- size 498726
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a34e8b91d3051420bfb8c4ba27722b99d278a4978aef5762486618f61b6c9cb
3
+ size 504858
models/tokenizer/dga_tokenizer_16k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/dga_tokenizer_32k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c6adbb6a2b032fa7b557424a5edd13dc3704143f7d186901b32123bcf787d26e
3
- size 762316
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:826110fdb06bda52c24e93da98774bf4100a3debe58994bc1c86d2a34ed118db
3
+ size 770121
models/tokenizer/dga_tokenizer_32k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/dga_tokenizer_64k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:695c7b0dd869dc5f9126a73cf711decd919d032aa8892d7438104ceea5a7c753
3
- size 1323388
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c5171a543ae4e21cd31b367763559376ac764272d2694e29a4337d23bc699fe
3
+ size 1346382
models/tokenizer/dga_tokenizer_64k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/dga_tokenizer_8k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4ce78da224fb5b29f03d6213868be8683d4052fc0e52e7e0cbbd27666c375e14
3
- size 369134
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f812eb174504a46a3df3548ce2b36943ee8709f15da981d20e06bcd090f36da8
3
+ size 372649
models/tokenizer/dga_tokenizer_8k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/dga_vocabulary.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1bd94786291299be72a5be7e116f391249bdc68e0bded026706ea3b22708c4c8
3
- size 698852
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb56e1a5ae64d3c05131485aff4c1f555eb471d296f0e0dfd449a3ac2a4307d8
3
+ size 566914
models/vocabulary/dga_vocabulary_metadata.json CHANGED
@@ -1,16 +1,17 @@
1
  {
2
  "language": "dga",
3
- "vocabulary_size": 40845,
 
4
  "statistics": {
5
- "type_token_ratio": 0.07889417385692979,
6
  "coverage": {
7
- "top_100": 0.4500698726906755,
8
- "top_1000": 0.6972710476345139,
9
- "top_5000": 0.8312848740226014,
10
- "top_10000": 0.8771366014664006
11
  },
12
- "hapax_count": 69921,
13
- "hapax_ratio": 0.631249661448459,
14
- "total_documents": 3853
15
  }
16
  }
 
1
  {
2
  "language": "dga",
3
+ "vocabulary_size": 33219,
4
+ "variant": "full",
5
  "statistics": {
6
+ "type_token_ratio": 0.06853071308718046,
7
  "coverage": {
8
+ "top_100": 0.49309902585584753,
9
+ "top_1000": 0.7210536107323922,
10
+ "top_5000": 0.8525060013355275,
11
+ "top_10000": 0.89766138896653
12
  },
13
+ "hapax_count": 43033,
14
+ "hapax_ratio": 0.564352410428579,
15
+ "total_documents": 3820
16
  }
17
  }
models/word_markov/dga_markov_ctx1_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:00aeb4a119714d9b31ec3351d405875ff617499e74aa5c4cc29b957a118b9b57
3
- size 4397669
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:868b4ce1ba4db3c0a6352234f8049f7c35a4e8393e16dde6bd5fbacdf7fcd405
3
+ size 2926334
models/word_markov/dga_markov_ctx1_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "dga",
5
- "unique_contexts": 110912,
6
- "total_transitions": 1863288
7
  }
 
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "dga",
5
+ "unique_contexts": 76185,
6
+ "total_transitions": 1108849
7
  }
models/word_markov/dga_markov_ctx2_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1945878f20d05022c1bb511b96c0631e6268a2fbdaaa18299e4c5632860c4063
3
- size 9997328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac10270f52d31bd0366bc6e60776fc1eeb7019c509213cb098107ff1ffa4e9ff
3
+ size 7424049
models/word_markov/dga_markov_ctx2_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "dga",
5
- "unique_contexts": 505122,
6
- "total_transitions": 1859435
7
  }
 
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "dga",
5
+ "unique_contexts": 402963,
6
+ "total_transitions": 1105029
7
  }