--- language: dga language_name: Southern Dagaare language_family: atlantic_gur tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-atlantic_gur license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.080 - name: best_isotropy type: isotropy value: 0.8588 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-04 --- # Southern Dagaare - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Southern Dagaare** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.655x | 3.66 | 0.0592% | 426,016 | | **16k** | 3.850x | 3.85 | 0.0623% | 404,419 | | **32k** | 3.987x | 3.99 | 0.0645% | 390,549 | | **64k** | 4.080x 🏆 | 4.08 | 0.0660% | 381,660 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Lambussie e la tembile ane a Lambussie Karni desekyere teŋkpoŋ, desekyere naŋ be...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁lambussie ▁e ▁la ▁tembile ▁ane ▁a ▁lambussie ▁kar ni ▁desekyere ... (+19 more)` | 29 | | 16k | `▁lambussie ▁e ▁la ▁tembile ▁ane ▁a ▁lambussie ▁kar ni ▁desekyere ... (+19 more)` | 29 | | 32k | `▁lambussie ▁e ▁la ▁tembile ▁ane ▁a ▁lambussie ▁karni ▁desekyere ▁teŋkpoŋ ... (+18 more)` | 28 | | 64k | `▁lambussie ▁e ▁la ▁tembile ▁ane ▁a ▁lambussie ▁karni ▁desekyere ▁teŋkpoŋ ... (+18 more)` | 28 | **Sample 2:** `Lugo e la dabaarãã ba naŋ maŋ ba wagre ŋa ba naŋ wa meɛrɛ dié, lugo maŋ taa la k...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁lu go ▁e ▁la ▁da baa r ãã ▁ba ▁naŋ ... (+27 more)` | 37 | | 16k | `▁lu go ▁e ▁la ▁da baa rãã ▁ba ▁naŋ ▁maŋ ... (+25 more)` | 35 | | 32k | `▁lugo ▁e ▁la ▁da baa rãã ▁ba ▁naŋ ▁maŋ ▁ba ... (+21 more)` | 31 | | 64k | `▁lugo ▁e ▁la ▁dabaarãã ▁ba ▁naŋ ▁maŋ ▁ba ▁wagre ▁ŋa ... (+18 more)` | 28 | **Sample 3:** `Sheikh Osman Nuhu Sharubutu waa la a Ghana zaa Silaamabiiri wideɛrɛ. O dɔgebo be...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁she ikh ▁os man ▁nuhu ▁shar ubu tu ▁waa ▁la ... (+18 more)` | 28 | | 16k | `▁sheikh ▁osman ▁nuhu ▁shar ubu tu ▁waa ▁la ▁a ▁ghana ... (+14 more)` | 24 | | 32k | `▁sheikh ▁osman ▁nuhu ▁shar ubutu ▁waa ▁la ▁a ▁ghana ▁zaa ... (+13 more)` | 23 | | 64k | `▁sheikh ▁osman ▁nuhu ▁sharubutu ▁waa ▁la ▁a ▁ghana ▁zaa ▁silaamabiiri ... (+12 more)` | 22 | ### Key Findings - **Best Compression:** 64k achieves 4.080x compression - **Lowest UNK Rate:** 8k with 0.0592% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 5,247 | 12.36 | 23,604 | 25.2% | 52.5% | | **2-gram** | Subword | 261 🏆 | 8.03 | 3,102 | 67.0% | 99.0% | | **3-gram** | Word | 15,091 | 13.88 | 40,759 | 12.7% | 34.8% | | **3-gram** | Subword | 2,130 | 11.06 | 23,753 | 29.7% | 72.3% | | **4-gram** | Word | 37,462 | 15.19 | 77,183 | 7.6% | 22.9% | | **4-gram** | Subword | 10,952 | 13.42 | 113,607 | 15.0% | 44.1% | | **5-gram** | Word | 33,178 | 15.02 | 59,664 | 7.6% | 22.1% | | **5-gram** | Subword | 34,072 | 15.06 | 261,669 | 9.2% | 29.6% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `la a` | 8,318 | | 2 | `e la` | 8,255 | | 3 | `ka o` | 5,097 | | 4 | `naŋ be` | 4,526 | | 5 | `o da` | 4,441 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `naŋ be a` | 2,381 | | 2 | `e la a` | 1,581 | | 3 | `o e la` | 1,352 | | 4 | `da e la` | 1,226 | | 5 | `sommo yizie zaa` | 1,176 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `sommo yizie zaa africa` | 1,004 | | 2 | `o da e la` | 534 | | 3 | `of the 4th republic` | 440 | | 4 | `4th republic of ghana` | 439 | | 5 | `parliament of the 4th` | 439 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `parliament of the 4th republic` | 438 | | 2 | `the 4th republic of ghana` | 434 | | 3 | `of the 4th republic of` | 434 | | 4 | `4th republic of ghana zaa` | 348 | | 5 | `republic of ghana zaa africa` | 341 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a _` | 295,811 | | 2 | `e _` | 179,385 | | 3 | `_ a` | 141,327 | | 4 | `_ n` | 88,607 | | 5 | `a n` | 84,293 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ a _` | 75,684 | | 2 | `_ l a` | 47,173 | | 3 | `l a _` | 44,354 | | 4 | `_ n a` | 42,956 | | 5 | `a ŋ _` | 41,497 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ l a _` | 40,459 | | 2 | `n a ŋ _` | 25,681 | | 3 | `_ n a ŋ` | 24,499 | | 4 | `_ d a _` | 21,223 | | 5 | `_ k a _` | 20,083 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ n a ŋ _` | 24,351 | | 2 | `e _ l a _` | 16,215 | | 3 | `_ a n e _` | 12,136 | | 4 | `g h a n a` | 10,185 | | 5 | `_ g h a n` | 9,611 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 261 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~30% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.7877 | 1.726 | 5.30 | 76,185 | 21.2% | | **1** | Subword | 0.9123 | 1.882 | 7.16 | 1,143 | 8.8% | | **2** | Word | 0.2777 | 1.212 | 1.73 | 402,963 | 72.2% | | **2** | Subword | 0.9272 | 1.902 | 5.67 | 8,182 | 7.3% | | **3** | Word | 0.1241 | 1.090 | 1.24 | 697,461 | 87.6% | | **3** | Subword | 0.8532 | 1.807 | 4.16 | 46,384 | 14.7% | | **4** | Word | 0.0565 🏆 | 1.040 | 1.09 | 865,473 | 94.4% | | **4** | Subword | 0.6504 | 1.570 | 2.74 | 193,130 | 35.0% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `a dudu taa la taa la martha hyer spainunited states be la rev r b enfuomo` 2. `la 27 june how lucky philip dube akon kanye kanye west african universities african cinema hosts` 3. `o teŋkpoŋ geogarapi a 21 december ane o ba meŋ da eɛ bonwuoraa dagaaba naŋ be` **Context Size 2:** 1. `la a ghana ports ane coastal eŋgyinia poɔ o da nyeε gyerema aŋa pɔge ko a paalikaara` 2. `e la desekyere ayi eŋɛ twifo atti morkwa desekyere a o south sɛŋ ne fumesua a o` 3. `ka o fãã a kyɛ a na toɔ di a kogi ne 14 391 vootuu ka lɛ` **Context Size 3:** 1. `naŋ be a gaana paaloo mr hackman owusu agyeman la a diplomats mine naŋ baare knust aliu mahama` 2. `e la a is bolgatanga munisipal naŋ taa tensɔgɔ yɛlloŋ naŋ na baŋ pare pie ne anuu te` 3. `o e la neŋkpoŋ naŋ kaara a naasaala mine nimikpɛ kyaare ne a silla ane goryeo saŋa naŋ` **Context Size 4:** 1. `o da e la business development officer of fonak technologies ltd and chief executive officer of the ...` 2. `of the 4th republic of ghana zaa africa parliament of the 4th republic of ghana zaa africa parliamen...` 3. `parliament of the 4th republic of ghana zaa africa parliament of the 4th republic of ghana zaa afric...` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_erwiamarles_a_l` 2. `anest,_nelica_a_` 3. `e_pra,_ssi_aaɡba` **Context Size 2:** 1. `a_nund_te_8_me._o` 2. `e_a_e_a_tho/_ⓘ_in` 3. `_a_garebɔloolijew` **Context Size 3:** 1. `_a_baŋ_bebiri_daga` 2. `_la_bare_poɔ._a_yu` 3. `la_kology._oble_ma` **Context Size 4:** 1. `_la_doŋ_kaa_naŋ_naŋ` 2. `naŋ_be_a_kaŋa_naŋ_b` 3. `_naŋ_be_tigiri_a_de` ### Key Findings - **Best Predictability:** Context-4 (word) with 94.4% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (193,130 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 33,219 | | Total Tokens | 1,069,636 | | Mean Frequency | 32.20 | | Median Frequency | 4 | | Frequency Std Dev | 610.71 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | a | 77,430 | | 2 | la | 41,562 | | 3 | o | 29,242 | | 4 | naŋ | 24,554 | | 5 | da | 21,295 | | 6 | ka | 20,388 | | 7 | ba | 17,329 | | 8 | e | 16,396 | | 9 | poɔ | 14,743 | | 10 | ane | 12,198 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | buorεε | 2 | | 2 | libirɩ | 2 | | 3 | kpɩ | 2 | | 4 | yεltarihɩ | 2 | | 5 | jaʋ | 2 | | 6 | daahe | 2 | | 7 | tigrihi | 2 | | 8 | pileehi | 2 | | 9 | revive | 2 | | 10 | ekewaolu | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.1395 | | R² (Goodness of Fit) | 0.997636 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 51.3% | | Top 1,000 | 75.0% | | Top 5,000 | 88.7% | | Top 10,000 | 93.4% | ### Key Findings - **Zipf Compliance:** R²=0.9976 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 51.3% of corpus - **Long Tail:** 23,219 words needed for remaining 6.6% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8588 🏆 | 0.3392 | N/A | N/A | | **mono_64d** | 64 | 0.7947 | 0.2830 | N/A | N/A | | **mono_128d** | 128 | 0.5119 | 0.2439 | N/A | N/A | | **aligned_32d** | 32 | 0.8588 | 0.3417 | 0.0440 | 0.3200 | | **aligned_64d** | 64 | 0.7947 | 0.2829 | 0.1180 | 0.4400 | | **aligned_128d** | 128 | 0.5119 | 0.2497 | 0.2020 | 0.5080 | ### Key Findings - **Best Isotropy:** mono_32d with 0.8588 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2901. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 20.2% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **-0.253** | Low formulaic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-e` | service, kpeɛmine, dɔre | | `-re` | dɔre, core, sefaare | | `-ng` | providing, serving, keeling | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `aare` | 1.84x | 72 contexts | zaare, daare, gaare | | `igyi` | 2.52x | 15 contexts | rigyiŋ, firigyi, irigyiŋ | | `aalo` | 1.78x | 43 contexts | gaalo, maalo, saalo | | `atio` | 2.19x | 20 contexts | matio, nation, station | | `eɛre` | 1.75x | 39 contexts | jeɛre, weɛre, neɛre | | `paal` | 1.62x | 50 contexts | paali, paale, paalo | | `tion` | 1.99x | 22 contexts | motion, nation, action | | `aale` | 1.53x | 47 contexts | laale, waale, paale | | `aloŋ` | 2.09x | 16 contexts | baloŋ, zaloŋ, yaloŋ | | `yaar` | 1.73x | 28 contexts | yaari, yaaro, yaara | | `rigy` | 2.15x | 14 contexts | rigyiŋ, firigyi, irigyiŋ | | `irig` | 2.40x | 9 contexts | irigiŋ, irigin, firigyi | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. *No significant affix co-occurrences detected.* ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | pɔgesarre | **`pɔgesar-re`** | 4.5 | `pɔgesar` | | lomboring | **`lombori-ng`** | 4.5 | `lombori` | | counselling | **`counselli-ng`** | 1.5 | `counselli` | | processing | **`processi-ng`** | 1.5 | `processi` | | containing | **`containi-ng`** | 1.5 | `containi` | | sasefaare | **`sasefaa-re`** | 1.5 | `sasefaa` | | schoolboarding | **`schoolboardi-ng`** | 1.5 | `schoolboardi` | | parodying | **`parodyi-ng`** | 1.5 | `parodyi` | | transforming | **`transformi-ng`** | 1.5 | `transformi` | | derbyshire | **`derbyshi-re`** | 1.5 | `derbyshi` | | dankwasere | **`dankwase-re`** | 1.5 | `dankwase` | | bonyɔgere | **`bonyɔge-re`** | 1.5 | `bonyɔge` | | sɛgebikparre | **`sɛgebikpar-re`** | 1.5 | `sɛgebikpar` | | nimbitɔɔre | **`nimbitɔɔ-re`** | 1.5 | `nimbitɔɔ` | | chongqing | **`chongqi-ng`** | 1.5 | `chongqi` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Southern Dagaare shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.08x) | | N-gram | **2-gram** | Lowest perplexity (261) | | Markov | **Context-4** | Highest predictability (94.4%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-04 02:08:16*