Upload all models and assets for dz (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +296 -142
- models/embeddings/aligned/dz_128d.bin +3 -0
- models/embeddings/aligned/dz_128d.meta.json +1 -0
- models/embeddings/aligned/dz_128d.projection.npy +3 -0
- models/embeddings/aligned/dz_128d_metadata.json +8 -0
- models/embeddings/aligned/dz_32d.bin +3 -0
- models/embeddings/aligned/dz_32d.meta.json +1 -0
- models/embeddings/aligned/dz_32d.projection.npy +3 -0
- models/embeddings/aligned/dz_32d_metadata.json +8 -0
- models/embeddings/aligned/dz_64d.bin +3 -0
- models/embeddings/aligned/dz_64d.meta.json +1 -0
- models/embeddings/aligned/dz_64d.projection.npy +3 -0
- models/embeddings/aligned/dz_64d_metadata.json +8 -0
- models/embeddings/monolingual/dz_128d.bin +2 -2
- models/embeddings/monolingual/dz_128d_metadata.json +5 -3
- models/embeddings/monolingual/dz_32d.bin +2 -2
- models/embeddings/monolingual/dz_32d_metadata.json +5 -3
- models/embeddings/monolingual/dz_64d.bin +2 -2
- models/embeddings/monolingual/dz_64d_metadata.json +5 -3
- models/subword_markov/dz_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/dz_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/dz_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/dz_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/dz_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/dz_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/dz_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/dz_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/dz_2gram_subword.parquet +2 -2
- models/subword_ngram/dz_2gram_subword_metadata.json +2 -2
- models/subword_ngram/dz_3gram_subword.parquet +2 -2
- models/subword_ngram/dz_3gram_subword_metadata.json +2 -2
- models/subword_ngram/dz_4gram_subword.parquet +2 -2
- models/subword_ngram/dz_4gram_subword_metadata.json +2 -2
- models/subword_ngram/dz_5gram_subword.parquet +3 -0
- models/subword_ngram/dz_5gram_subword_metadata.json +7 -0
- models/tokenizer/dz_tokenizer_16k.model +2 -2
- models/tokenizer/dz_tokenizer_16k.vocab +0 -0
- models/tokenizer/dz_tokenizer_32k.model +2 -2
- models/tokenizer/dz_tokenizer_32k.vocab +0 -0
- models/tokenizer/dz_tokenizer_64k.model +2 -2
- models/tokenizer/dz_tokenizer_64k.vocab +0 -0
- models/tokenizer/dz_tokenizer_8k.model +2 -2
- models/tokenizer/dz_tokenizer_8k.vocab +0 -0
- models/vocabulary/dz_vocabulary.parquet +2 -2
- models/vocabulary/dz_vocabulary_metadata.json +10 -8
- models/word_markov/dz_markov_ctx1_word.parquet +2 -2
- models/word_markov/dz_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/dz_markov_ctx2_word.parquet +2 -2
- models/word_markov/dz_markov_ctx2_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: dz
|
| 3 |
-
language_name:
|
| 4 |
language_family: tibetoburman_tibetic
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-tibetoburman_tibetic
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value:
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -44,12 +54,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +70,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,58 +80,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** | 4.
|
| 76 |
-
| **16k** |
|
| 77 |
-
| **32k** |
|
| 78 |
-
| **64k** |
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:**
|
| 85 |
-
|
| 86 |
-
དུ་བ་ཡེ
|
| 87 |
-
|
| 88 |
-
Category:རྒྱལ་ཁབ
|
| 89 |
-
Category:ཨེ་ཤི་ཡ`
|
| 90 |
|
| 91 |
| Vocab | Tokens | Count |
|
| 92 |
|-------|--------|-------|
|
| 93 |
-
| 8k |
|
| 94 |
-
| 16k |
|
| 95 |
-
| 32k |
|
| 96 |
-
| 64k |
|
| 97 |
|
| 98 |
-
**Sample 2:**
|
| 99 |
-
Category:གནམ་རིག`
|
| 100 |
|
| 101 |
| Vocab | Tokens | Count |
|
| 102 |
|-------|--------|-------|
|
| 103 |
-
| 8k |
|
| 104 |
-
| 16k |
|
| 105 |
-
| 32k |
|
| 106 |
-
| 64k |
|
| 107 |
|
| 108 |
-
**Sample 3:**
|
| 109 |
-
Category:གནམ་རིག`
|
| 110 |
|
| 111 |
| Vocab | Tokens | Count |
|
| 112 |
|-------|--------|-------|
|
| 113 |
-
| 8k |
|
| 114 |
-
| 16k |
|
| 115 |
-
| 32k |
|
| 116 |
-
| 64k |
|
| 117 |
|
| 118 |
|
| 119 |
### Key Findings
|
| 120 |
|
| 121 |
-
- **Best Compression:** 64k achieves
|
| 122 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 123 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 124 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 125 |
|
|
@@ -128,57 +139,111 @@ Category:གནམ་རིག`
|
|
| 128 |
|
| 129 |

|
| 130 |
|
|
|
|
|
|
|
| 131 |

|
| 132 |
|
| 133 |
### Results
|
| 134 |
|
| 135 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 136 |
-
|
| 137 |
-
| **2-gram** |
|
| 138 |
-
| **2-gram** |
|
| 139 |
-
| **3-gram** |
|
| 140 |
-
| **3-gram** |
|
| 141 |
-
| **4-gram** |
|
| 142 |
-
| **4-gram** |
|
|
|
|
|
|
|
| 143 |
|
| 144 |
### Top 5 N-grams by Size
|
| 145 |
|
| 146 |
-
**2-grams:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
| Rank | N-gram | Count |
|
| 149 |
|------|--------|-------|
|
| 150 |
-
| 1 |
|
| 151 |
-
| 2 |
|
| 152 |
-
| 3 |
|
| 153 |
-
| 4 |
|
| 154 |
-
| 5 | `་
|
| 155 |
|
| 156 |
-
**
|
| 157 |
|
| 158 |
| Rank | N-gram | Count |
|
| 159 |
|------|--------|-------|
|
| 160 |
-
| 1 |
|
| 161 |
-
| 2 | `་
|
| 162 |
-
| 3 | `་
|
| 163 |
-
| 4 | `་
|
| 164 |
-
| 5 |
|
| 165 |
|
| 166 |
-
**
|
| 167 |
|
| 168 |
| Rank | N-gram | Count |
|
| 169 |
|------|--------|-------|
|
| 170 |
-
| 1 | `་
|
| 171 |
-
| 2 | `་
|
| 172 |
-
| 3 | `་
|
| 173 |
-
| 4 | `་
|
| 174 |
-
| 5 |
|
| 175 |
|
| 176 |
|
| 177 |
### Key Findings
|
| 178 |
|
| 179 |
-
- **Best Perplexity:** 2-gram with
|
| 180 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 181 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 182 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 183 |
|
| 184 |
---
|
|
@@ -186,55 +251,86 @@ Category:གནམ་རིག`
|
|
| 186 |
|
| 187 |

|
| 188 |
|
|
|
|
|
|
|
| 189 |

|
| 190 |
|
| 191 |
### Results
|
| 192 |
|
| 193 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 194 |
-
|
| 195 |
-
| **1** |
|
| 196 |
-
| **1** |
|
| 197 |
-
| **2** | 0.
|
| 198 |
-
| **2** | 0.
|
| 199 |
-
| **3** | 0.
|
| 200 |
-
| **3** | 0.
|
| 201 |
-
| **4** | 0.
|
| 202 |
-
| **4** | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
**Context Size 1:**
|
| 209 |
|
| 210 |
-
1. `་
|
| 211 |
-
2.
|
| 212 |
-
3.
|
| 213 |
|
| 214 |
**Context Size 2:**
|
| 215 |
|
| 216 |
-
1.
|
| 217 |
-
2.
|
| 218 |
-
3.
|
| 219 |
|
| 220 |
**Context Size 3:**
|
| 221 |
|
| 222 |
-
1.
|
| 223 |
-
2.
|
| 224 |
-
3.
|
| 225 |
|
| 226 |
**Context Size 4:**
|
| 227 |
|
| 228 |
-
1.
|
| 229 |
-
2.
|
| 230 |
-
3.
|
| 231 |
|
| 232 |
|
| 233 |
### Key Findings
|
| 234 |
|
| 235 |
-
- **Best Predictability:** Context-
|
| 236 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 237 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 238 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 239 |
|
| 240 |
---
|
|
@@ -250,64 +346,64 @@ Below are text samples generated from each Markov chain model:
|
|
| 250 |
|
| 251 |
| Metric | Value |
|
| 252 |
|--------|-------|
|
| 253 |
-
| Vocabulary Size |
|
| 254 |
-
| Total Tokens |
|
| 255 |
-
| Mean Frequency |
|
| 256 |
-
| Median Frequency |
|
| 257 |
-
| Frequency Std Dev |
|
| 258 |
|
| 259 |
### Most Common Words
|
| 260 |
|
| 261 |
| Rank | Word | Frequency |
|
| 262 |
|------|------|-----------|
|
| 263 |
-
| 1 |
|
| 264 |
-
| 2 |
|
| 265 |
-
| 3 |
|
| 266 |
-
| 4 |
|
| 267 |
-
| 5 |
|
| 268 |
-
| 6 |
|
| 269 |
-
| 7 |
|
| 270 |
-
| 8 |
|
| 271 |
-
| 9 |
|
| 272 |
-
| 10 |
|
| 273 |
|
| 274 |
### Least Common Words (from vocabulary)
|
| 275 |
|
| 276 |
| Rank | Word | Frequency |
|
| 277 |
|------|------|-----------|
|
| 278 |
-
| 1 |
|
| 279 |
-
| 2 |
|
| 280 |
-
| 3 |
|
| 281 |
-
| 4 |
|
| 282 |
-
| 5 |
|
| 283 |
-
| 6 |
|
| 284 |
| 7 | assam | 2 |
|
| 285 |
| 8 | pelgen | 2 |
|
| 286 |
-
| 9 |
|
| 287 |
-
| 10 |
|
| 288 |
|
| 289 |
### Zipf's Law Analysis
|
| 290 |
|
| 291 |
| Metric | Value |
|
| 292 |
|--------|-------|
|
| 293 |
-
| Zipf Coefficient | 1.
|
| 294 |
-
| R² (Goodness of Fit) | 0.
|
| 295 |
| Adherence Quality | **excellent** |
|
| 296 |
|
| 297 |
### Coverage Analysis
|
| 298 |
|
| 299 |
| Top N Words | Coverage |
|
| 300 |
|-------------|----------|
|
| 301 |
-
| Top 100 |
|
| 302 |
-
| Top 1,000 |
|
| 303 |
-
| Top 5,000 |
|
| 304 |
| Top 10,000 | 0.0% |
|
| 305 |
|
| 306 |
### Key Findings
|
| 307 |
|
| 308 |
-
- **Zipf Compliance:** R²=0.
|
| 309 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 310 |
-
- **Long Tail:** -
|
| 311 |
|
| 312 |
---
|
| 313 |
## 5. Word Embeddings Evaluation
|
|
@@ -320,24 +416,79 @@ Below are text samples generated from each Markov chain model:
|
|
| 320 |
|
| 321 |

|
| 322 |
|
| 323 |
-
### Model Comparison
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
### Key Findings
|
| 333 |
|
| 334 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 335 |
-
- **
|
| 336 |
-
- **
|
| 337 |
-
- **Recommendation:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
---
|
| 340 |
-
##
|
| 341 |
|
| 342 |

|
| 343 |
|
|
@@ -345,11 +496,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 345 |
|
| 346 |
| Component | Recommended | Rationale |
|
| 347 |
|-----------|-------------|-----------|
|
| 348 |
-
| Tokenizer | **
|
| 349 |
-
| N-gram | **
|
| 350 |
-
| Markov | **Context-4** | Highest predictability (
|
| 351 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 352 |
|
|
|
|
| 353 |
---
|
| 354 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 355 |
|
|
@@ -539,7 +691,8 @@ If you use these models in your research, please cite:
|
|
| 539 |
author = {Kamali, Omar},
|
| 540 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 541 |
year = {2025},
|
| 542 |
-
|
|
|
|
| 543 |
url = {https://huggingface.co/wikilangs}
|
| 544 |
institution = {Omneity Labs}
|
| 545 |
}
|
|
@@ -555,7 +708,8 @@ MIT License - Free for academic and commercial use.
|
|
| 555 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 556 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 557 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 558 |
---
|
| 559 |
*Generated by Wikilangs Models Pipeline*
|
| 560 |
|
| 561 |
-
*Report Date:
|
|
|
|
| 1 |
---
|
| 2 |
language: dz
|
| 3 |
+
language_name: Dzongkha
|
| 4 |
language_family: tibetoburman_tibetic
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-tibetoburman_tibetic
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 5.510
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.6999
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
+
value: 0
|
| 43 |
+
generated: 2026-01-04
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Dzongkha - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Dzongkha** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 54 |
### Models & Assets
|
| 55 |
|
| 56 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 57 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 58 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 59 |
- Subword N-gram and Markov chains
|
| 60 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 61 |
- Language Vocabulary
|
| 62 |
- Language Statistics
|
| 63 |
+
|
| 64 |

|
| 65 |
|
| 66 |
### Analysis and Evaluation
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
| 77 |
|
|
|
|
| 80 |
|
| 81 |

|
| 82 |
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
### Results
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 4.484x | 4.49 | 0.0965% | 813,691 |
|
| 94 |
+
| **16k** | 4.768x | 4.77 | 0.1026% | 765,197 |
|
| 95 |
+
| **32k** | 5.092x | 5.09 | 0.1096% | 716,539 |
|
| 96 |
+
| **64k** | 5.510x 🏆 | 5.51 | 0.1185% | 662,175 |
|
| 97 |
|
| 98 |
### Tokenization Examples
|
| 99 |
|
| 100 |
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
|
| 102 |
+
**Sample 1:** `རྒྱལ་ཁབ ཇཱ་པཱན། 日本 ཇ་པན་གྱི་རྒྱལ་ཁབ་འདི་ཤར་ཨེ་ཤི་ཡ་ལུ་ཆགས་ཏི་ཡོད་མི་མཚོ་གླིང་གྱི...`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
| Vocab | Tokens | Count |
|
| 105 |
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁རྒྱལ་ཁབ ▁ཇ ཱ་ པ ཱན། ▁ 日本 ▁ཇ་པ ན་ གྱི་རྒྱལ་ཁབ་ ... (+31 more)` | 41 |
|
| 107 |
+
| 16k | `▁རྒྱལ་ཁབ ▁ཇཱ་པཱན། ▁ 日本 ▁ཇ་པན་ གྱི་རྒྱལ་ཁབ་ འདི་ ཤར་ཨེ་ཤི་ཡ་ ལུ་ཆག���་ ཏི་ ... (+23 more)` | 33 |
|
| 108 |
+
| 32k | `▁རྒྱལ་ཁབ ▁ཇཱ་པཱན། ▁ 日本 ▁ཇ་པན་ གྱི་རྒྱལ་ཁབ་ འདི་ཤར་ཨེ་ཤི་ཡ་ ལུ་ཆགས་ཏི་ ཡོད་མི་ མཚོ་གླིང་གྱི་ ... (+12 more)` | 22 |
|
| 109 |
+
| 64k | `▁རྒྱལ་ཁབ ▁ཇཱ་པཱན། ▁ 日本 ▁ཇ་པན་ གྱི་རྒྱལ་ཁབ་ འདི་ཤར་ཨེ་ཤི་ཡ་ ལུ་ཆགས་ཏི་ ཡོད་མི་ མཚོ་གླིང་གྱི་ ... (+12 more)` | 22 |
|
| 110 |
|
| 111 |
+
**Sample 2:** `སེམས་ཅན བྱི་ལི ཁྱི ཉ སྟག བྱམོ དོམ ལུག རྟ བྱི་ཙི པར་རིས་བར་འཁྱམས། ཁུངས་གཏུག། ཕྱི...`
|
|
|
|
| 112 |
|
| 113 |
| Vocab | Tokens | Count |
|
| 114 |
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁སེམས་ ཅན ▁བྱི་ ལི ▁ཁྱ ི ▁ཉ ▁སྟ ག ▁བྱ ... (+15 more)` | 25 |
|
| 116 |
+
| 16k | `▁སེམས་ཅན ▁བྱི་ལི ▁ཁྱ ི ▁ཉ ▁སྟ ག ▁བྱ མོ ▁ད ... (+13 more)` | 23 |
|
| 117 |
+
| 32k | `▁སེམས་ཅན ▁བྱི་ལི ▁ཁྱི ▁ཉ ▁སྟག ▁བྱམོ ▁དོམ ▁ལུག ▁རྟ ▁བྱི་ཙི ... (+5 more)` | 15 |
|
| 118 |
+
| 64k | `▁སེམས་ཅན ▁བྱི་ལི ▁ཁྱི ▁ཉ ▁སྟག ▁བྱམོ ▁དོམ ▁ལུག ▁རྟ ▁བྱི་ཙི ... (+5 more)` | 15 |
|
| 119 |
|
| 120 |
+
**Sample 3:** `ཞི་ཆོག་གི་སྐབས་ལུ་འཕུ་ནི་གི་ཆོས་ཆས། རྒྱ་མཚོ་ནང་གི་སེམས་ཅན་ཅིག་གི་ཕྱི་ཤུབས། དུང་ད...`
|
|
|
|
| 121 |
|
| 122 |
| Vocab | Tokens | Count |
|
| 123 |
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁ཞི་ ཆོག་ གི་ སྐབས་ལུ་ འཕ ུ་ ནི་གི་ ཆོས་ ཆས། ▁རྒྱ་མཚོ་ ... (+15 more)` | 25 |
|
| 125 |
+
| 16k | `▁ཞི་ ཆོག་ གི་སྐབས་ལུ་ འཕ ུ་ ནི་གི་ ཆོས་ ཆས། ▁རྒྱ་མཚོ་ ནང་གི་ ... (+12 more)` | 22 |
|
| 126 |
+
| 32k | `▁ཞི་ཆོག་ གི་སྐབས་ལུ་ འཕུ་ནི་གི་ ཆོས་ཆས། ▁རྒྱ་མཚོ་ ནང་གི་སེམས་ཅན་ ཅིག་གི་ཕྱི་ཤུབས། ▁དུང་དཀར་གྱི་ མིང་གཞན་ ▁སྐྱེ་བ་ལྔ་པ་ ... (+1 more)` | 11 |
|
| 127 |
+
| 64k | `▁ཞི་ཆོག་ གི་སྐབས་ལུ་ འཕུ་ནི་གི་ ཆོས་ཆས། ▁རྒྱ་མཚོ་ ནང་གི་སེམས་ཅན་ ཅིག་གི་ཕྱི་ཤུབས། ▁དུང་དཀར་གྱི་ མིང་གཞན་ ▁སྐྱེ་བ་ལྔ་པ་ ... (+1 more)` | 11 |
|
| 128 |
|
| 129 |
|
| 130 |
### Key Findings
|
| 131 |
|
| 132 |
+
- **Best Compression:** 64k achieves 5.510x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.0965% unknown tokens
|
| 134 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
|
|
|
|
| 139 |
|
| 140 |

|
| 141 |
|
| 142 |
+

|
| 143 |
+
|
| 144 |

|
| 145 |
|
| 146 |
### Results
|
| 147 |
|
| 148 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 11,790 | 13.53 | 28,884 | 11.2% | 35.3% |
|
| 151 |
+
| **2-gram** | Subword | 488 🏆 | 8.93 | 5,527 | 57.6% | 90.8% |
|
| 152 |
+
| **3-gram** | Word | 34,131 | 15.06 | 59,067 | 5.7% | 18.6% |
|
| 153 |
+
| **3-gram** | Subword | 3,461 | 11.76 | 28,498 | 24.5% | 62.8% |
|
| 154 |
+
| **4-gram** | Word | 80,153 | 16.29 | 114,752 | 2.9% | 10.7% |
|
| 155 |
+
| **4-gram** | Subword | 15,479 | 13.92 | 106,273 | 12.4% | 37.5% |
|
| 156 |
+
| **5-gram** | Word | 77,316 | 16.24 | 96,422 | 2.3% | 8.9% |
|
| 157 |
+
| **5-gram** | Subword | 44,243 | 15.43 | 194,726 | 7.1% | 23.4% |
|
| 158 |
|
| 159 |
### Top 5 N-grams by Size
|
| 160 |
|
| 161 |
+
**2-grams (Word):**
|
| 162 |
+
|
| 163 |
+
| Rank | N-gram | Count |
|
| 164 |
+
|------|--------|-------|
|
| 165 |
+
| 1 | `ཡོདཔ ཨིན` | 3,325 |
|
| 166 |
+
| 2 | `རྒྱལ ཁབ` | 2,719 |
|
| 167 |
+
| 3 | `སྤྱི ལོ` | 1,933 |
|
| 168 |
+
| 4 | `ཨིན མས` | 1,872 |
|
| 169 |
+
| 5 | `ནང ལུ` | 1,628 |
|
| 170 |
+
|
| 171 |
+
**3-grams (Word):**
|
| 172 |
+
|
| 173 |
+
| Rank | N-gram | Count |
|
| 174 |
+
|------|--------|-------|
|
| 175 |
+
| 1 | `རིན པོ ཆེ` | 778 |
|
| 176 |
+
| 2 | `ཡོདཔ ཨིན མས` | 778 |
|
| 177 |
+
| 3 | `རྒྱལ ཁབ ནང` | 732 |
|
| 178 |
+
| 4 | `སྤྱི ལོ ལུ` | 688 |
|
| 179 |
+
| 5 | `འབྲུག རྒྱལ ཁབ` | 623 |
|
| 180 |
+
|
| 181 |
+
**4-grams (Word):**
|
| 182 |
+
|
| 183 |
+
| Rank | N-gram | Count |
|
| 184 |
+
|------|--------|-------|
|
| 185 |
+
| 1 | `རྒྱལ ཁབ ནང ལུ` | 309 |
|
| 186 |
+
| 2 | `འབྲུག རྒྱལ ཁབ ནང` | 288 |
|
| 187 |
+
| 3 | `དཔལ ལྡན འབྲུག པའི` | 272 |
|
| 188 |
+
| 4 | `གུ རུ རིན པོ` | 250 |
|
| 189 |
+
| 5 | `སྡེ སྲིད ཁྲི རབས` | 223 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `གུ རུ རིན པོ ཆེ` | 184 |
|
| 196 |
+
| 2 | `གནམ ལོ མེད སྤྱི ལོ` | 162 |
|
| 197 |
+
| 3 | `ཞབས དྲུང རིན པོ ཆེ` | 150 |
|
| 198 |
+
| 4 | `རྒྱལ ཡོངས དགའ སྐྱིད དཔལ` | 127 |
|
| 199 |
+
| 5 | `ཡོངས དགའ སྐྱིད དཔལ འཛོམས` | 125 |
|
| 200 |
+
|
| 201 |
+
**2-grams (Subword):**
|
| 202 |
+
|
| 203 |
+
| Rank | N-gram | Count |
|
| 204 |
+
|------|--------|-------|
|
| 205 |
+
| 1 | `ས ་` | 123,525 |
|
| 206 |
+
| 2 | `ང ་` | 91,851 |
|
| 207 |
+
| 3 | `ན ་` | 70,834 |
|
| 208 |
+
| 4 | `་ _` | 62,281 |
|
| 209 |
+
| 5 | `་ བ` | 59,589 |
|
| 210 |
+
|
| 211 |
+
**3-grams (Subword):**
|
| 212 |
|
| 213 |
| Rank | N-gram | Count |
|
| 214 |
|------|--------|-------|
|
| 215 |
+
| 1 | `ག ས ་` | 25,075 |
|
| 216 |
+
| 2 | `ད ང ་` | 18,381 |
|
| 217 |
+
| 3 | `་ ད ང` | 17,725 |
|
| 218 |
+
| 4 | `། _ །` | 15,647 |
|
| 219 |
+
| 5 | `་ པ ་` | 15,536 |
|
| 220 |
|
| 221 |
+
**4-grams (Subword):**
|
| 222 |
|
| 223 |
| Rank | N-gram | Count |
|
| 224 |
|------|--------|-------|
|
| 225 |
+
| 1 | `་ ད ང ་` | 17,384 |
|
| 226 |
+
| 2 | `་ པ འི ་` | 13,232 |
|
| 227 |
+
| 3 | `་ ལ ས ་` | 12,579 |
|
| 228 |
+
| 4 | `་ འ དི ་` | 8,184 |
|
| 229 |
+
| 5 | `་ ན ང ་` | 6,539 |
|
| 230 |
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
|
| 233 |
| Rank | N-gram | Count |
|
| 234 |
|------|--------|-------|
|
| 235 |
+
| 1 | `་ ཡོ ད པ ་` | 5,559 |
|
| 236 |
+
| 2 | `་ ལ ས ་ _` | 4,930 |
|
| 237 |
+
| 3 | `་ ད ང ་ _` | 4,145 |
|
| 238 |
+
| 4 | `་ འ བ ད ་` | 3,971 |
|
| 239 |
+
| 5 | `ས ་ པ འི ་` | 3,925 |
|
| 240 |
|
| 241 |
|
| 242 |
### Key Findings
|
| 243 |
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 488
|
| 245 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~23% of corpus
|
| 247 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
|
| 249 |
---
|
|
|
|
| 251 |
|
| 252 |

|
| 253 |
|
| 254 |
+

|
| 255 |
+
|
| 256 |

|
| 257 |
|
| 258 |
### Results
|
| 259 |
|
| 260 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 1.1820 | 2.269 | 14.12 | 12,061 | 0.0% |
|
| 263 |
+
| **1** | Subword | 0.8884 | 1.851 | 7.57 | 1,607 | 11.2% |
|
| 264 |
+
| **2** | Word | 0.5611 | 1.475 | 2.65 | 170,162 | 43.9% |
|
| 265 |
+
| **2** | Subword | 0.6433 | 1.562 | 5.02 | 12,152 | 35.7% |
|
| 266 |
+
| **3** | Word | 0.2267 | 1.170 | 1.41 | 449,950 | 77.3% |
|
| 267 |
+
| **3** | Subword | 0.5247 | 1.439 | 3.26 | 61,009 | 47.5% |
|
| 268 |
+
| **4** | Word | 0.0989 🏆 | 1.071 | 1.15 | 633,460 | 90.1% |
|
| 269 |
+
| **4** | Subword | 0.3500 | 1.275 | 2.11 | 199,035 | 65.0% |
|
| 270 |
+
|
| 271 |
+
### Generated Text Samples (Word-based)
|
| 272 |
+
|
| 273 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 274 |
+
|
| 275 |
+
**Context Size 1:**
|
| 276 |
+
|
| 277 |
+
1. `དང སྲས ཚུ གིས ས ཐག མ སླེབས ཚེ འདི ལེགས སོ བཅོམ ཡིད གསུམ གྱི`
|
| 278 |
+
2. `པ ཨིན པས དེ མ མི ཡུལ བྱིན ཅན ཁྱོད འདི གི ལཱ འབད ནི ཀ`
|
| 279 |
+
3. `ལུ བདག སྐྱོང ལེགས སོ དཀརཔོ ཅིག གཅིག པུར ལུ ༡༡ ག གིས པདྨ རིགས མ`
|
| 280 |
+
|
| 281 |
+
**Context Size 2:**
|
| 282 |
+
|
| 283 |
+
1. `ཡོདཔ ཨིན པས རྒྱབ རྟེན ༡ དྲག ཤོས ཀྱི གསོལ ར ༤ གློག འཕྲིན གྱི ཁྱབ བདག`
|
| 284 |
+
2. `རྒྱལ ཁབ ཀྱི སྐུ རིམ དང པོ ནས བློ གྲོས བཟང མོ གིས ཨ ལུ འདི ཆ`
|
| 285 |
+
3. `སྤྱི ལོ སྤྱི ཟླ ༤ པ ༡༡ པ ལས འཛིན ཟེར བཙུགས མི མཐོ ཚད ཀི ལོ`
|
| 286 |
|
| 287 |
+
**Context Size 3:**
|
| 288 |
+
|
| 289 |
+
1. `རིན པོ ཆེ སངས རྒྱས ཀུན གྱི སྐུ འཆང བ སངས རྒྱས ཀུན གྱི གསུང ཡང ཡིན རྡོ`
|
| 290 |
+
2. `ཡོདཔ ཨིན མས ཨོ རྒྱན ཆོས གླིང ལྷ ཁང འདི དུས རབས ༨ པའི ནང གུ རུ རིན`
|
| 291 |
+
3. `རྒྱལ ཁབ ནང ལུ ཡང དམངས གཙོའི རིང ལུགས ཀྱི རྒྱལ པོའི བརྟན བཞུགས གི རྩ ཚིག གསར`
|
| 292 |
+
|
| 293 |
+
**Context Size 4:**
|
| 294 |
+
|
| 295 |
+
1. `རྒྱལ ཁབ ནང ལུ དཔལ འབྱོར གྱི སྡེ ཚན ཅིག ཡང གཞི གཙུགས འབད དེ འདུག དེ ཡང སྔོན`
|
| 296 |
+
2. `འབྲུག རྒྱལ ཁབ ནང ཡོད པའི རྒྱལ ཁབ ཅིག ཨིན དེ ཡང གྷི རེཊ བིརི ཊེན ཟེར མི འདི`
|
| 297 |
+
3. `དཔལ ལྡན འབྲུག པའི གདུང བརྒྱུད ཅིག ཞུ ནིའི དོན ལུ ཚེས ཉེར དགུ ལུ བླ མ གུ རུ`
|
| 298 |
|
| 299 |
+
|
| 300 |
+
### Generated Text Samples (Subword-based)
|
| 301 |
+
|
| 302 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 303 |
|
| 304 |
**Context Size 1:**
|
| 305 |
|
| 306 |
+
1. `་_ཚར་ཏེ་གིས་ཡོདཔོན་འ`
|
| 307 |
+
2. `_རྫོང་སྟེངས་_ཞེང་བ་རུའི`
|
| 308 |
+
3. `སལཔ་ལུ་ག་བཏུབཟོཔ་ཡིག`
|
| 309 |
|
| 310 |
**Context Size 2:**
|
| 311 |
|
| 312 |
+
1. `ས་ལུང་ཞིན་པ་འབྲུག་འབྲུག`
|
| 313 |
+
2. `ང་ཁྲུང་ཁབ་སྦྲུལ་ཙ་ཝཊ་ཛ`
|
| 314 |
+
3. `ན་ནང་བླ་མཆོད་ཆོས་དཔ་`
|
| 315 |
|
| 316 |
**Context Size 3:**
|
| 317 |
|
| 318 |
+
1. `གས་རིག་པའི་ནུས་པ་སྦེ་ཐོན`
|
| 319 |
+
2. `དང་རའི་ཨཔ་ཟླཝ་ག་རང་འ`
|
| 320 |
+
3. `་དང་ཕྱི་མས།_།ཉི་ཟླ་_༢༩`
|
| 321 |
|
| 322 |
**Context Size 4:**
|
| 323 |
|
| 324 |
+
1. `་དང་གཅིག་ནང་_ཡན་ལག་ཁ`
|
| 325 |
+
2. `་པའི་བླ་མ་ཐུབ།_།དགེ་བ་སྟོ`
|
| 326 |
+
3. `་ལས་_འབྱུང་ཁུངས།_།དགའ་`
|
| 327 |
|
| 328 |
|
| 329 |
### Key Findings
|
| 330 |
|
| 331 |
+
- **Best Predictability:** Context-4 (word) with 90.1% predictability
|
| 332 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (199,035 contexts)
|
| 334 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
|
| 336 |
---
|
|
|
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 6,761 |
|
| 350 |
+
| Total Tokens | 898,876 |
|
| 351 |
+
| Mean Frequency | 132.95 |
|
| 352 |
+
| Median Frequency | 6 |
|
| 353 |
+
| Frequency Std Dev | 709.47 |
|
| 354 |
|
| 355 |
### Most Common Words
|
| 356 |
|
| 357 |
| Rank | Word | Frequency |
|
| 358 |
|------|------|-----------|
|
| 359 |
+
| 1 | དང | 18,802 |
|
| 360 |
+
| 2 | པ | 17,903 |
|
| 361 |
+
| 3 | ལུ | 15,384 |
|
| 362 |
+
| 4 | པའི | 14,560 |
|
| 363 |
+
| 5 | ལས | 14,391 |
|
| 364 |
+
| 6 | མི | 11,348 |
|
| 365 |
+
| 7 | དེ | 11,091 |
|
| 366 |
+
| 8 | མ | 10,372 |
|
| 367 |
+
| 9 | གི | 10,307 |
|
| 368 |
+
| 10 | འདི | 9,382 |
|
| 369 |
|
| 370 |
### Least Common Words (from vocabulary)
|
| 371 |
|
| 372 |
| Rank | Word | Frequency |
|
| 373 |
|------|------|-----------|
|
| 374 |
+
| 1 | printer | 2 |
|
| 375 |
+
| 2 | fortress | 2 |
|
| 376 |
+
| 3 | gods | 2 |
|
| 377 |
+
| 4 | wordpress | 2 |
|
| 378 |
+
| 5 | phurdo | 2 |
|
| 379 |
+
| 6 | gonpa | 2 |
|
| 380 |
| 7 | assam | 2 |
|
| 381 |
| 8 | pelgen | 2 |
|
| 382 |
+
| 9 | anecdotes | 2 |
|
| 383 |
+
| 10 | kheng | 2 |
|
| 384 |
|
| 385 |
### Zipf's Law Analysis
|
| 386 |
|
| 387 |
| Metric | Value |
|
| 388 |
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 1.8277 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.959592 |
|
| 391 |
| Adherence Quality | **excellent** |
|
| 392 |
|
| 393 |
### Coverage Analysis
|
| 394 |
|
| 395 |
| Top N Words | Coverage |
|
| 396 |
|-------------|----------|
|
| 397 |
+
| Top 100 | 49.0% |
|
| 398 |
+
| Top 1,000 | 92.3% |
|
| 399 |
+
| Top 5,000 | 99.6% |
|
| 400 |
| Top 10,000 | 0.0% |
|
| 401 |
|
| 402 |
### Key Findings
|
| 403 |
|
| 404 |
+
- **Zipf Compliance:** R²=0.9596 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 49.0% of corpus
|
| 406 |
+
- **Long Tail:** -3,239 words needed for remaining 100.0% coverage
|
| 407 |
|
| 408 |
---
|
| 409 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 416 |
|
| 417 |

|
| 418 |
|
|
|
|
| 419 |
|
| 420 |
+
### 5.1 Cross-Lingual Alignment
|
| 421 |
+
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
### 5.2 Model Comparison
|
| 428 |
+
|
| 429 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.6999 🏆 | 0.3567 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.4345 | 0.3403 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.1109 | 0.3305 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.6999 | 0.3594 | 0.0547 | 0.2644 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.4345 | 0.3388 | 0.1307 | 0.4103 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.1109 | 0.3270 | 0.2340 | 0.4742 |
|
| 437 |
|
| 438 |
### Key Findings
|
| 439 |
|
| 440 |
+
- **Best Isotropy:** mono_32d with 0.6999 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.3421. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 23.4% R@1 in cross-lingual retrieval.
|
| 443 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
+
|
| 445 |
+
---
|
| 446 |
+
## 6. Morphological Analysis (Experimental)
|
| 447 |
+
|
| 448 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
+
|
| 450 |
+
### 6.1 Productivity & Complexity
|
| 451 |
+
|
| 452 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
+
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **-0.621** | Low formulaic content | - |
|
| 456 |
+
|
| 457 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
+
|
| 459 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 460 |
+
|
| 461 |
+
*No productive affixes detected.*
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 465 |
+
|
| 466 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 467 |
+
|
| 468 |
+
*No significant bound stems detected.*
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 472 |
+
|
| 473 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 474 |
+
|
| 475 |
+
*No significant affix co-occurrences detected.*
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 479 |
+
|
| 480 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 481 |
+
|
| 482 |
+
*Insufficient data for recursive segmentation.*
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
### 6.6 Linguistic Interpretation
|
| 486 |
+
|
| 487 |
+
> **Automated Insight:**
|
| 488 |
+
The language Dzongkha shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 489 |
|
| 490 |
---
|
| 491 |
+
## 7. Summary & Recommendations
|
| 492 |
|
| 493 |

|
| 494 |
|
|
|
|
| 496 |
|
| 497 |
| Component | Recommended | Rationale |
|
| 498 |
|-----------|-------------|-----------|
|
| 499 |
+
| Tokenizer | **64k BPE** | Best compression (5.51x) |
|
| 500 |
+
| N-gram | **2-gram** | Lowest perplexity (488) |
|
| 501 |
+
| Markov | **Context-4** | Highest predictability (90.1%) |
|
| 502 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 503 |
|
| 504 |
+
|
| 505 |
---
|
| 506 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 507 |
|
|
|
|
| 691 |
author = {Kamali, Omar},
|
| 692 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 693 |
year = {2025},
|
| 694 |
+
doi = {10.5281/zenodo.18073153},
|
| 695 |
+
publisher = {Zenodo},
|
| 696 |
url = {https://huggingface.co/wikilangs}
|
| 697 |
institution = {Omneity Labs}
|
| 698 |
}
|
|
|
|
| 708 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 709 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 710 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 711 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 712 |
---
|
| 713 |
*Generated by Wikilangs Models Pipeline*
|
| 714 |
|
| 715 |
+
*Report Date: 2026-01-04 03:00:40*
|
models/embeddings/aligned/dz_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1dcfe07db51e338f29b11cc3948400bc263bdaa9ee20bff094b937df3a88eafe
|
| 3 |
+
size 1025712069
|
models/embeddings/aligned/dz_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "dz", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/dz_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae9d51cd6d1f20f33ad43e0ebc040e9c60e5efef1660c66c48e1753e7f29e7d1
|
| 3 |
+
size 65664
|
models/embeddings/aligned/dz_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "dz",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 329,
|
| 7 |
+
"vocab_size": 1602
|
| 8 |
+
}
|
models/embeddings/aligned/dz_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e3933e9d9dffccc98f99b10e7f95f6656ef45b6fa711dc8726dc64e374a14aa6
|
| 3 |
+
size 256481733
|
models/embeddings/aligned/dz_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "dz", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/dz_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:17308e828737ebd9ac6a3c706dae164e4bcc335a5173fecdc73408ccedf7da6c
|
| 3 |
+
size 4224
|
models/embeddings/aligned/dz_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "dz",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 329,
|
| 7 |
+
"vocab_size": 1602
|
| 8 |
+
}
|
models/embeddings/aligned/dz_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34e82a789619b535b455c2b7f657a7f8bda7d16f597d1daedd1096e57ba64065
|
| 3 |
+
size 512891845
|
models/embeddings/aligned/dz_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "dz", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/dz_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:55de110e901818649692cfc6a7e97343d7cd34e63a6fa97e21046355a71de3e0
|
| 3 |
+
size 16512
|
models/embeddings/aligned/dz_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "dz",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 329,
|
| 7 |
+
"vocab_size": 1602
|
| 8 |
+
}
|
models/embeddings/monolingual/dz_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1dcfe07db51e338f29b11cc3948400bc263bdaa9ee20bff094b937df3a88eafe
|
| 3 |
+
size 1025712069
|
models/embeddings/monolingual/dz_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1602
|
| 15 |
}
|
models/embeddings/monolingual/dz_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e3933e9d9dffccc98f99b10e7f95f6656ef45b6fa711dc8726dc64e374a14aa6
|
| 3 |
+
size 256481733
|
models/embeddings/monolingual/dz_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1602
|
| 15 |
}
|
models/embeddings/monolingual/dz_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34e82a789619b535b455c2b7f657a7f8bda7d16f597d1daedd1096e57ba64065
|
| 3 |
+
size 512891845
|
models/embeddings/monolingual/dz_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1602
|
| 15 |
}
|
models/subword_markov/dz_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3087bea20e8eb6b2ec3a5f0aa9584c7311e41fe5a4c01f823fa4834212620662
|
| 3 |
+
size 111860
|
models/subword_markov/dz_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
+
"unique_contexts": 1607,
|
| 6 |
+
"total_transitions": 2899198
|
| 7 |
}
|
models/subword_markov/dz_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6292dd07a274165c86703180f2425201d1d9674e4ba2c33f61d9d5938c3467e1
|
| 3 |
+
size 489356
|
models/subword_markov/dz_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
+
"unique_contexts": 12152,
|
| 6 |
+
"total_transitions": 2898160
|
| 7 |
}
|
models/subword_markov/dz_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:388847f6c74b750ae03e7f5efd4aaeacf73b7bd43240dd42b5f2aa721dbdc066
|
| 3 |
+
size 1647571
|
models/subword_markov/dz_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
+
"unique_contexts": 61009,
|
| 6 |
+
"total_transitions": 2897122
|
| 7 |
}
|
models/subword_markov/dz_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fed702bf6148ce9dc1a7ea84a35755fc292d0a1697d7d3752899d2b7ed2b2c5b
|
| 3 |
+
size 4311752
|
models/subword_markov/dz_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
+
"unique_contexts": 199035,
|
| 6 |
+
"total_transitions": 2896084
|
| 7 |
}
|
models/subword_ngram/dz_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:98106b25d70e32c0869643449157893becaaa5cd2d9c93a574d49972755b142f
|
| 3 |
+
size 77884
|
models/subword_ngram/dz_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
+
"unique_ngrams": 5527,
|
| 6 |
+
"total_ngrams": 2899198
|
| 7 |
}
|
models/subword_ngram/dz_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:19e9ca58532c279df9875e0fc70fc0ca01a0dc4a6eeebb0d90cc9611de440cca
|
| 3 |
+
size 417712
|
models/subword_ngram/dz_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
+
"unique_ngrams": 28498,
|
| 6 |
+
"total_ngrams": 2898160
|
| 7 |
}
|
models/subword_ngram/dz_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dc939eb8f6b49a4d85499e546bee0c3aa02484d5639731734c57e7e77ccc3406
|
| 3 |
+
size 1535380
|
models/subword_ngram/dz_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "dz",
|
| 5 |
+
"unique_ngrams": 106273,
|
| 6 |
+
"total_ngrams": 2897122
|
| 7 |
}
|
models/subword_ngram/dz_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:89c0a9d344f772c56895fcfa4f96ca8389e2d1d65d242db9969fdf57da31004e
|
| 3 |
+
size 2925710
|
models/subword_ngram/dz_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "dz",
|
| 5 |
+
"unique_ngrams": 194726,
|
| 6 |
+
"total_ngrams": 2896084
|
| 7 |
+
}
|
models/tokenizer/dz_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f90c7e3cf5a68d178f10a0beb7ddb97feaa78af6989d232df8e51de111001a4
|
| 3 |
+
size 731782
|
models/tokenizer/dz_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/dz_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea0364e6b2d160e778e60d5e1c73e3e9b08f8793e92690aafe427a87f8eb980a
|
| 3 |
+
size 1365323
|
models/tokenizer/dz_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/dz_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:402c9983197ff52d444fc136259bb6b1f0cfb5b38449cd46aef1f96b7701f99e
|
| 3 |
+
size 2390465
|
models/tokenizer/dz_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/dz_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1416416e068b7dd36e23224aed70c1131a475dc4b0464d18851552856625ace
|
| 3 |
+
size 450802
|
models/tokenizer/dz_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/dz_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:14e984f867b546d329e8a05a2bde8d13e79ac78e9afc51f2e97dc5f7abdcc723
|
| 3 |
+
size 113898
|
models/vocabulary/dz_vocabulary_metadata.json
CHANGED
|
@@ -1,15 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "dz",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
|
|
|
| 10 |
},
|
| 11 |
-
"hapax_count":
|
| 12 |
-
"hapax_ratio": 0.
|
| 13 |
-
"total_documents":
|
| 14 |
}
|
| 15 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "dz",
|
| 3 |
+
"vocabulary_size": 6761,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.013374135154743156,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.4871301735883779,
|
| 9 |
+
"top_1000": 0.9174028542105356,
|
| 10 |
+
"top_5000": 0.9902080052377329,
|
| 11 |
+
"top_10000": 0.9976852671066834
|
| 12 |
},
|
| 13 |
+
"hapax_count": 5332,
|
| 14 |
+
"hapax_ratio": 0.4409162325312164,
|
| 15 |
+
"total_documents": 1038
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/dz_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:76e337706f6a7fb91b004453fee9ac14da9e139b1614cc7f2e3089bc6b4ea3fc
|
| 3 |
+
size 876930
|
models/word_markov/dz_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "dz",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "dz",
|
| 5 |
+
"unique_contexts": 12061,
|
| 6 |
+
"total_transitions": 903170
|
| 7 |
}
|
models/word_markov/dz_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62fa7abf255f3a8a538ee56225f2684bcea4c021a186d768c55d5ca85930ca27
|
| 3 |
+
size 4355103
|
models/word_markov/dz_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "dz",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "dz",
|
| 5 |
+
"unique_contexts": 170162,
|
| 6 |
+
"total_transitions": 902132
|
| 7 |
}
|