eustlb HF Staff commited on
Commit
5f47f66
·
1 Parent(s): 91967ea

trfms-compatible

Browse files
chat_template.jinja CHANGED
@@ -1,15 +1,32 @@
1
- {% for message in messages %}
2
- {% if message.role == "system" %}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  <|system|>
4
- {{ message.content }}
5
- {% elif message.role == "user" %}
6
  <|user|>
7
- {{ message.content }}
8
- {% elif message.role == "assistant" %}
9
  <|assistant|>
10
- {{ message.content }}
11
- {% endif %}
12
- {% endfor %}
13
- {% if add_generation_prompt %}
14
  <|assistant|>
15
- {% endif %}
 
1
+ {%- macro to_text(content) -%}
2
+ {%- if content is string -%}
3
+ {{- content -}}
4
+ {%- elif content is iterable and content is not mapping -%}
5
+ {%- for item in content -%}
6
+ {%- if item is mapping and item.type == 'text' and item.text is defined -%}
7
+ {{- item.text -}}
8
+ {%- elif item is mapping and (item.type == 'audio' or 'audio' in item) -%}
9
+ <|begin_of_audio|><|pad|><|end_of_audio|><|user|>
10
+ {% elif item is string -%}
11
+ {{- item -}}
12
+ {%- endif -%}
13
+ {%- endfor -%}
14
+ {%- else -%}
15
+ {{- content -}}
16
+ {%- endif -%}
17
+ {%- endmacro -%}
18
+ {%- for m in messages -%}
19
+ {%- if m.role == 'system' -%}
20
  <|system|>
21
+ {{ to_text(m.content) | trim }}
22
+ {%- elif m.role == 'user' -%}
23
  <|user|>
24
+ {{ to_text(m.content) | trim }}
25
+ {%- elif m.role == 'assistant' -%}
26
  <|assistant|>
27
+ {{ to_text(m.content) | trim }}
28
+ {%- endif -%}
29
+ {%- endfor -%}
30
+ {%- if add_generation_prompt -%}
31
  <|assistant|>
32
+ {% endif -%}
config.json CHANGED
@@ -1,119 +1,60 @@
1
  {
2
- "_name_or_path": "zai-org/GLM-ASR-Nano-2512",
3
- "model_type": "glmasr",
4
  "architectures": [
5
- "GlmasrModel"
6
  ],
7
- "auto_map": {
8
- "AutoConfig": "configuration_glmasr.GlmasrConfig",
9
- "AutoModelForCausalLM": "modeling_glmasr.GlmasrModel"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  },
11
- "torch_dtype": "bfloat16",
12
- "attn_implementation": "flash_attention_2",
13
- "lm_config": {
14
- "architectures": [
15
- "LlamaForCausalLM"
16
- ],
17
- "do_sample": false,
 
18
  "eos_token_id": [
19
  59246,
20
  59253,
21
  59255
22
  ],
 
23
  "hidden_act": "silu",
24
  "hidden_size": 2048,
25
  "initializer_range": 0.02,
26
  "intermediate_size": 6144,
27
- "length_penalty": 1.0,
28
- "max_length": 20,
29
  "max_position_embeddings": 8192,
30
- "min_length": 0,
31
  "model_type": "llama",
32
- "no_repeat_ngram_size": 0,
33
  "num_attention_heads": 16,
34
- "num_beam_groups": 1,
35
- "num_beams": 1,
36
  "num_hidden_layers": 28,
37
  "num_key_value_heads": 4,
38
- "num_return_sequences": 1,
39
- "pad_token_id": 59260,
40
- "return_dict": true,
41
  "rms_norm_eps": 1e-05,
42
- "rope_dim": 128,
43
- "rope_theta": 10000.0,
44
- "torch_dtype": "float16",
45
- "typical_p": 1.0,
46
- "vocab_size": 59264
47
- },
48
- "whisper_config": {
49
- "activation_function": "gelu",
50
- "architectures": [
51
- "WhisperForConditionalGeneration"
52
- ],
53
- "begin_suppress_tokens": [
54
- 220,
55
- 50257
56
- ],
57
- "bos_token_id": 50257,
58
- "chunk_size_feed_forward": 0,
59
- "classifier_proj_size": 256,
60
- "d_model": 1280,
61
- "decoder_attention_heads": 20,
62
- "decoder_ffn_dim": 5120,
63
- "decoder_layerdrop": 0.0,
64
- "decoder_layers": 32,
65
- "decoder_start_token_id": 50258,
66
- "diversity_penalty": 0.0,
67
- "do_sample": false,
68
- "dropout": 0.0,
69
- "early_stopping": false,
70
- "encoder_attention_heads": 20,
71
- "encoder_ffn_dim": 5120,
72
- "encoder_layerdrop": 0.0,
73
- "encoder_layers": 32,
74
- "encoder_no_repeat_ngram_size": 0,
75
- "eos_token_id": 50257,
76
- "init_std": 0.02,
77
- "is_decoder": false,
78
- "is_encoder_decoder": true,
79
- "length_penalty": 1.0,
80
- "mask_feature_length": 10,
81
- "mask_feature_min_masks": 0,
82
- "mask_feature_prob": 0.0,
83
- "mask_time_length": 10,
84
- "mask_time_min_masks": 2,
85
- "mask_time_prob": 0.05,
86
- "max_length": 448,
87
- "max_source_positions": 1500,
88
- "max_target_positions": 448,
89
- "median_filter_width": 7,
90
- "min_length": 0,
91
- "model_type": "whisper",
92
- "no_repeat_ngram_size": 0,
93
- "num_beam_groups": 1,
94
- "num_beams": 1,
95
- "num_hidden_layers": 32,
96
- "num_mel_bins": 128,
97
- "num_return_sequences": 1,
98
- "output_attentions": false,
99
- "output_hidden_states": false,
100
- "output_scores": false,
101
- "pad_token_id": 50256,
102
- "remove_invalid_values": false,
103
- "repetition_penalty": 1.0,
104
- "return_dict": true,
105
- "torch_dtype": "bfloat16",
106
- "torchscript": false,
107
- "typical_p": 1.0,
108
  "use_cache": true,
109
- "use_weighted_layer_sum": false,
110
- "vocab_size": 51866
111
  },
112
- "adapter_type": "mlp",
113
- "merge_factor": 4,
114
- "use_rope": true,
115
- "max_whisper_length": 1500,
116
- "max_length": 65536,
117
- "mlp_adapter_act": "gelu",
118
- "transformers_version": "4.51.3"
119
  }
 
1
  {
 
 
2
  "architectures": [
3
+ "GlmAsrForConditionalGeneration"
4
  ],
5
+ "audio_config": {
6
+ "attention_dropout": 0.0,
7
+ "head_dim": 64,
8
+ "hidden_act": "gelu",
9
+ "hidden_size": 1280,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 5120,
12
+ "max_position_embeddings": 1500,
13
+ "model_type": "glmasr_encoder",
14
+ "num_attention_heads": 20,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 20,
17
+ "num_mel_bins": 128,
18
+ "partial_rotary_factor": 0.5,
19
+ "rope_parameters": {
20
+ "partial_rotary_factor": 0.5,
21
+ "rope_theta": 10000.0,
22
+ "rope_type": "default"
23
+ }
24
  },
25
+ "audio_token_id": 59260,
26
+ "dtype": "bfloat16",
27
+ "hidden_size": 2048,
28
+ "model_type": "glmasr",
29
+ "projector_hidden_act": "gelu",
30
+ "text_config": {
31
+ "attention_bias": false,
32
+ "attention_dropout": 0.0,
33
  "eos_token_id": [
34
  59246,
35
  59253,
36
  59255
37
  ],
38
+ "head_dim": 128,
39
  "hidden_act": "silu",
40
  "hidden_size": 2048,
41
  "initializer_range": 0.02,
42
  "intermediate_size": 6144,
 
 
43
  "max_position_embeddings": 8192,
44
+ "mlp_bias": false,
45
  "model_type": "llama",
 
46
  "num_attention_heads": 16,
 
 
47
  "num_hidden_layers": 28,
48
  "num_key_value_heads": 4,
49
+ "pretraining_tp": 1,
 
 
50
  "rms_norm_eps": 1e-05,
51
+ "rope_parameters": {
52
+ "rope_theta": 10000.0,
53
+ "rope_type": "default"
54
+ },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  "use_cache": true,
56
+ "vocab_size": 59264
 
57
  },
58
+ "transformers_version": "5.0.0.dev0",
59
+ "vocab_size": 59264
 
 
 
 
 
60
  }
configuration_glmasr.py DELETED
@@ -1,43 +0,0 @@
1
- from typing import Any, Dict, List, Optional
2
-
3
- from transformers import LlamaConfig, PretrainedConfig, WhisperConfig
4
-
5
-
6
- class GlmasrConfig(PretrainedConfig):
7
- model_type = "Glmasr"
8
- is_composition = True
9
-
10
- def __init__(
11
- self,
12
- lm_config: Optional[Dict[str, Any] | LlamaConfig] = None,
13
- whisper_config: Optional[Dict[str, Any] | WhisperConfig] = None,
14
- adapter_type: str = "mlp",
15
- merge_factor: int = 2,
16
- spec_aug: bool = False,
17
- use_rope: bool = False,
18
- max_whisper_length: int = 1500,
19
- max_length: int = 1024,
20
- mlp_adapter_act: str = "gelu",
21
- **kwargs,
22
- ):
23
- super().__init__(**kwargs)
24
-
25
- if isinstance(lm_config, LlamaConfig):
26
- self.lm_config = lm_config
27
- else:
28
- self.lm_config = LlamaConfig.from_dict(lm_config or {})
29
- if isinstance(whisper_config, WhisperConfig):
30
- self.whisper_config = whisper_config
31
- else:
32
- self.whisper_config = WhisperConfig.from_dict(whisper_config or {})
33
-
34
- self.adapter_type = adapter_type
35
- self.merge_factor = merge_factor
36
- self.spec_aug = spec_aug
37
- self.use_rope = use_rope
38
- self.max_whisper_length = max_whisper_length
39
- self.max_length = max_length
40
- self.mlp_adapter_act = mlp_adapter_act
41
-
42
-
43
- __all__ = ["GlmasrConfig"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": [
5
+ 59246,
6
+ 59253,
7
+ 59255
8
+ ],
9
+ "transformers_version": "5.0.0.dev0"
10
+ }
inference.py DELETED
@@ -1,182 +0,0 @@
1
- import argparse
2
- from pathlib import Path
3
-
4
- import torch
5
- import torchaudio
6
- from transformers import (
7
- AutoConfig,
8
- AutoModelForCausalLM,
9
- AutoTokenizer,
10
- WhisperFeatureExtractor,
11
- )
12
-
13
-
14
- WHISPER_FEAT_CFG = {
15
- "chunk_length": 30,
16
- "feature_extractor_type": "WhisperFeatureExtractor",
17
- "feature_size": 128,
18
- "hop_length": 160,
19
- "n_fft": 400,
20
- "n_samples": 480000,
21
- "nb_max_frames": 3000,
22
- "padding_side": "right",
23
- "padding_value": 0.0,
24
- "processor_class": "WhisperProcessor",
25
- "return_attention_mask": False,
26
- "sampling_rate": 16000,
27
- }
28
-
29
- def get_audio_token_length(seconds, merge_factor=2):
30
- def get_T_after_cnn(L_in, dilation=1):
31
- for padding, kernel_size, stride in eval("[(1,3,1)] + [(1,3,2)] "):
32
- L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
33
- L_out = 1 + L_out // stride
34
- L_in = L_out
35
- return L_out
36
-
37
- mel_len = int(seconds * 100)
38
- audio_len_after_cnn = get_T_after_cnn(mel_len)
39
- audio_token_num = (audio_len_after_cnn - merge_factor) // merge_factor + 1
40
-
41
- # TODO: current whisper model can't process longer sequence, maybe cut chunk in the future
42
- audio_token_num = min(audio_token_num, 1500 // merge_factor)
43
-
44
- return audio_token_num
45
-
46
- def build_prompt(
47
- audio_path: Path,
48
- tokenizer,
49
- feature_extractor: WhisperFeatureExtractor,
50
- merge_factor: int,
51
- chunk_seconds: int = 30,
52
- ) -> dict:
53
- audio_path = Path(audio_path)
54
- wav, sr = torchaudio.load(str(audio_path))
55
- wav = wav[:1, :]
56
- if sr != feature_extractor.sampling_rate:
57
- wav = torchaudio.transforms.Resample(sr, feature_extractor.sampling_rate)(wav)
58
-
59
- tokens = []
60
- tokens += tokenizer.encode("<|user|>")
61
- tokens += tokenizer.encode("\n")
62
-
63
- audios = []
64
- audio_offsets = []
65
- audio_length = []
66
- chunk_size = chunk_seconds * feature_extractor.sampling_rate
67
- for start in range(0, wav.shape[1], chunk_size):
68
- chunk = wav[:, start : start + chunk_size]
69
- mel = feature_extractor(
70
- chunk.numpy(),
71
- sampling_rate=feature_extractor.sampling_rate,
72
- return_tensors="pt",
73
- padding="max_length",
74
- )["input_features"]
75
- audios.append(mel)
76
- seconds = chunk.shape[1] / feature_extractor.sampling_rate
77
- num_tokens = get_audio_token_length(seconds, merge_factor)
78
- tokens += tokenizer.encode("<|begin_of_audio|>")
79
- audio_offsets.append(len(tokens))
80
- tokens += [0] * num_tokens
81
- tokens += tokenizer.encode("<|end_of_audio|>")
82
- audio_length.append(num_tokens)
83
-
84
- if not audios:
85
- raise ValueError("音频内容为空或加载失败。")
86
-
87
- tokens += tokenizer.encode("<|user|>")
88
- tokens += tokenizer.encode("\nPlease transcribe this audio into text")
89
-
90
- tokens += tokenizer.encode("<|assistant|>")
91
- tokens += tokenizer.encode("\n")
92
-
93
- batch = {
94
- "input_ids": torch.tensor([tokens], dtype=torch.long),
95
- "audios": torch.cat(audios, dim=0),
96
- "audio_offsets": [audio_offsets],
97
- "audio_length": [audio_length],
98
- "attention_mask": torch.ones(1, len(tokens), dtype=torch.long),
99
- }
100
- return batch
101
-
102
-
103
- def prepare_inputs(batch: dict, device: torch.device) -> tuple[dict, int]:
104
- tokens = batch["input_ids"].to(device)
105
- attention_mask = batch["attention_mask"].to(device)
106
- audios = batch["audios"].to(device)
107
- model_inputs = {
108
- "inputs": tokens,
109
- "attention_mask": attention_mask,
110
- "audios": audios.to(torch.bfloat16),
111
- "audio_offsets": batch["audio_offsets"],
112
- "audio_length": batch["audio_length"],
113
- }
114
- return model_inputs, tokens.size(1)
115
-
116
-
117
- def transcribe(
118
- checkpoint_dir: Path,
119
- audio_path: Path,
120
- tokenizer_path: str | None,
121
- max_new_tokens: int,
122
- device: str,
123
- ):
124
- tokenizer_source = tokenizer_path if tokenizer_path else checkpoint_dir
125
- tokenizer = AutoTokenizer.from_pretrained(tokenizer_source)
126
- feature_extractor = WhisperFeatureExtractor(**WHISPER_FEAT_CFG)
127
-
128
- config = AutoConfig.from_pretrained(checkpoint_dir, trust_remote_code=True)
129
- model = AutoModelForCausalLM.from_pretrained(
130
- checkpoint_dir,
131
- config=config,
132
- torch_dtype=torch.bfloat16,
133
- trust_remote_code=True,
134
- ).to(device)
135
- model.eval()
136
-
137
- batch = build_prompt(
138
- audio_path,
139
- tokenizer,
140
- feature_extractor,
141
- merge_factor=config.merge_factor,
142
- )
143
-
144
- model_inputs, prompt_len = prepare_inputs(batch, device)
145
-
146
- with torch.inference_mode():
147
- generated = model.generate(
148
- **model_inputs,
149
- max_new_tokens=max_new_tokens,
150
- do_sample=False,
151
- )
152
- transcript_ids = generated[0, prompt_len:].cpu().tolist()
153
- transcript = tokenizer.decode(transcript_ids, skip_special_tokens=True).strip()
154
- print("----------")
155
- print(transcript or "[Empty transcription]")
156
-
157
-
158
- def main():
159
- parser = argparse.ArgumentParser(description="Minimal ASR transcription demo.")
160
- parser.add_argument("--checkpoint_dir", type=str, default=str(Path(__file__).parent))
161
- parser.add_argument("--audio", type=str, required=True, help="Path to audio file.")
162
- parser.add_argument(
163
- "--tokenizer_path",
164
- type=str,
165
- default=None,
166
- help="Tokenizer directory (defaults to checkpoint dir when omitted).",
167
- )
168
- parser.add_argument("--max_new_tokens", type=int, default=128)
169
- parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu")
170
- args = parser.parse_args()
171
-
172
- transcribe(
173
- checkpoint_dir=Path(args.checkpoint_dir),
174
- audio_path=Path(args.audio),
175
- tokenizer_path=args.tokenizer_path,
176
- max_new_tokens=args.max_new_tokens,
177
- device=args.device,
178
- )
179
-
180
-
181
- if __name__ == "__main__":
182
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f1a7e953150d134cce1a1199d6f18060cb99ee8a9d8e13673ff3bd840da0c096
3
- size 4524872840
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8af83ccf6b34dfc7921cedcc46d4a6dc6aaffa661b8f71b44e3a2ff60a90a91
3
+ size 4515776712
modeling_audio.py DELETED
@@ -1,410 +0,0 @@
1
- from typing import Any, Optional, Tuple
2
-
3
- import torch
4
- from torch import Tensor, nn
5
- from transformers import WhisperConfig
6
- from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
7
- from transformers.models.whisper.modeling_whisper import WhisperEncoder, WhisperEncoderLayer, WhisperFlashAttention2
8
- from transformers.utils import logging
9
- from torch.nn.functional import scaled_dot_product_attention
10
-
11
- logger = logging.get_logger(__name__)
12
-
13
-
14
- class RotaryEmbedding:
15
- def __init__(self, dim, rope_ratio=1, original_impl=False):
16
- super().__init__()
17
- self.dim = dim
18
- self.original_impl = original_impl
19
- self.rope_ratio = rope_ratio
20
-
21
- def forward_impl(
22
- self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
23
- ):
24
- """Enhanced Transformer with Rotary Position Embedding.
25
-
26
- Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
27
- transformers/rope/__init__.py. MIT License:
28
- https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
29
- """
30
- # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
31
- base = base * self.rope_ratio
32
- theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
33
-
34
- # Create position indexes `[0, 1, ..., seq_len - 1]`
35
- seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
36
-
37
- # Calculate the product of position index and $\theta_i$
38
- idx_theta = torch.outer(seq_idx, theta).float()
39
-
40
- cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
41
-
42
- # this is to mimic the behaviour of complex32, else we will get different results
43
- if dtype in (torch.float16, torch.bfloat16, torch.int8):
44
- cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
45
- return cache
46
-
47
- @torch.no_grad()
48
- def get_emb(self, max_seq_len, dtype, device):
49
- return self.forward_impl(
50
- max_seq_len, self.dim, dtype=dtype, device=device,
51
- )
52
-
53
-
54
- def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
55
- # x: [b, np, sq, hn]
56
- b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
57
- rot_dim = rope_cache.shape[-2] * 2
58
- x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
59
- # truncate to support variable sizes
60
- rope_cache = rope_cache[:, :sq]
61
- xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
62
- rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
63
- x_out2 = torch.stack(
64
- [
65
- xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
66
- xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
67
- ],
68
- -1,
69
- )
70
- x_out2 = x_out2.flatten(3)
71
- return torch.cat((x_out2, x_pass), dim=-1)
72
-
73
-
74
- class WhisperRoPEFlashAttn(WhisperFlashAttention2):
75
- def __init__(self, *args, **kwargs):
76
- super().__init__(*args, **kwargs)
77
-
78
- def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
79
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
80
-
81
- def forward(
82
- self,
83
- hidden_states: torch.Tensor,
84
- key_value_states: Optional[torch.Tensor] = None,
85
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
86
- attention_mask: Optional[torch.Tensor] = None,
87
- layer_head_mask: Optional[torch.Tensor] = None,
88
- output_attentions: bool = False,
89
- rotary_pos_emb: Optional[torch.Tensor] = None,
90
- position_ids: Optional[torch.Tensor] = None,
91
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
92
- # WhisperFlashAttention2 attention does not support output_attentions
93
- if output_attentions:
94
- logger.warning_once("WhisperFlashAttention2 attention does not support output_attentions, "
95
- "manually calculating attention weights.")
96
-
97
- # if key_value_states are provided this layer is used as a cross-attention layer
98
- # for the decoder
99
- is_cross_attention = key_value_states is not None
100
- bsz, q_len, _ = hidden_states.size()
101
-
102
- # get query proj
103
- assert not is_cross_attention, "Cross-attention not supported"
104
- key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
105
- query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
106
- if rotary_pos_emb is not None:
107
- query_states, key_states = [apply_rotary_pos_emb(
108
- i.transpose(1, 2),
109
- rotary_pos_emb,
110
- ).transpose(1, 2) for i in (query_states, key_states)]
111
- # get key, value proj
112
- # `past_key_value[0].shape[2] == key_value_states.shape[1]`
113
- # is checking that the `sequence_length` of the `past_key_value` is the same as
114
- # the provided `key_value_states` to support prefix tuning
115
- value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
116
- if past_key_value is not None:
117
- # reuse k, v, self_attention
118
- key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
119
- value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
120
-
121
- if self.is_decoder:
122
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
123
- # Further calls to cross_attention layer can then reuse all cross-attention
124
- # key/value_states (first "if" case)
125
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
126
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
127
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
128
- # if encoder bi-directional self-attention `past_key_value` is always `None`
129
- past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
130
-
131
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
132
- # therefore the input hidden states gets silently casted in float32. Hence, we need
133
- # cast them back in the correct dtype just to be sure everything works as expected.
134
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
135
- # in fp32. (LlamaRMSNorm handles it correctly)
136
-
137
- input_dtype = query_states.dtype
138
- if input_dtype == torch.float32:
139
- if torch.is_autocast_enabled():
140
- target_dtype = torch.get_autocast_gpu_dtype()
141
- # Handle the case where the model is quantized
142
- elif hasattr(self.config, "_pre_quantization_dtype"):
143
- target_dtype = self.config._pre_quantization_dtype
144
- else:
145
- target_dtype = self.q_proj.weight.dtype
146
-
147
- query_states = query_states.to(target_dtype)
148
- key_states = key_states.to(target_dtype)
149
- value_states = value_states.to(target_dtype)
150
-
151
- attn_output = scaled_dot_product_attention(
152
- query_states.transpose(1, 2),
153
- key_states.transpose(1, 2),
154
- value_states.transpose(1, 2),
155
- attn_mask=None,
156
- dropout_p=self.dropout if self.training else 0.0,
157
- is_causal=self.is_causal,
158
- ).transpose(1, 2)
159
-
160
- attn_output = attn_output.reshape(bsz, q_len, -1)
161
- attn_output = self.out_proj(attn_output)
162
-
163
- if not output_attentions:
164
- attn_weights = None
165
- else:
166
- attn_weights = (query_states.transpose(1, 2) * self.scaling) @ key_states.permute(0, 2, 3, 1)
167
- if self.is_causal:
168
- causal_mask = torch.triu(
169
- torch.ones(q_len, q_len, device=attn_weights.device), diagonal=1,
170
- ).unsqueeze(0).unsqueeze(0) * -1e9
171
- attn_weights = attn_weights + causal_mask
172
- attn_weights = nn.functional.softmax(attn_weights, dim=-1)
173
-
174
- return attn_output, attn_weights, past_key_value
175
-
176
-
177
- class WhisperSpecialEncoderLayer(WhisperEncoderLayer):
178
- def __init__(self, config: WhisperConfig):
179
- super().__init__(config)
180
- self.self_attn = WhisperRoPEFlashAttn(
181
- embed_dim=self.embed_dim,
182
- num_heads=config.encoder_attention_heads,
183
- dropout=config.attention_dropout,
184
- config=config,
185
- )
186
-
187
- def forward(
188
- self,
189
- hidden_states: torch.Tensor,
190
- attention_mask: torch.Tensor,
191
- layer_head_mask: torch.Tensor,
192
- output_attentions: bool = False,
193
- rotary_pos_emb: Optional[torch.Tensor] = None,
194
- position_ids: Optional[torch.Tensor] = None,
195
- ) -> tuple[Tensor, Any]:
196
- """
197
- Args:
198
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
199
- attention_mask (`torch.FloatTensor`): attention mask of size
200
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
201
- layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
202
- `(encoder_attention_heads,)`.
203
- output_attentions (`bool`, *optional*):
204
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
205
- returned tensors for more detail.
206
- """
207
- residual = hidden_states
208
- hidden_states = self.self_attn_layer_norm(hidden_states)
209
- hidden_states, attn_weights, kv_cache = self.self_attn(
210
- hidden_states=hidden_states,
211
- attention_mask=attention_mask,
212
- layer_head_mask=layer_head_mask,
213
- output_attentions=output_attentions,
214
- rotary_pos_emb=rotary_pos_emb,
215
- position_ids=position_ids,
216
- )
217
- hidden_states = nn.functional.dropout(
218
- hidden_states, p=self.dropout, training=self.training
219
- )
220
- hidden_states = residual + hidden_states
221
-
222
- residual = hidden_states
223
- hidden_states = self.final_layer_norm(hidden_states)
224
- hidden_states = self.activation_fn(self.fc1(hidden_states))
225
- hidden_states = nn.functional.dropout(
226
- hidden_states, p=self.activation_dropout, training=self.training
227
- )
228
- hidden_states = self.fc2(hidden_states)
229
- hidden_states = nn.functional.dropout(
230
- hidden_states, p=self.dropout, training=self.training
231
- )
232
- hidden_states = residual + hidden_states
233
-
234
- if hidden_states.dtype == torch.float16 and (
235
- torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
236
- ):
237
- clamp_value = torch.finfo(hidden_states.dtype).max - 1000
238
- hidden_states = torch.clamp(
239
- hidden_states, min=-clamp_value, max=clamp_value
240
- )
241
-
242
- outputs = (hidden_states, kv_cache)
243
-
244
- if output_attentions:
245
- outputs += (attn_weights,)
246
-
247
- return outputs
248
-
249
- class WhisperSpecialEncoder(WhisperEncoder):
250
- def __init__(
251
- self,
252
- config: WhisperConfig,
253
- use_rope=False,
254
- rope_ratio=1,
255
- ):
256
- super().__init__(config)
257
- self.use_rope = use_rope
258
- self.layers = nn.ModuleList(
259
- [WhisperSpecialEncoderLayer(config) for _ in range(config.encoder_layers)]
260
- )
261
- if use_rope:
262
- self.rotary_embedding = RotaryEmbedding(
263
- config.hidden_size // config.encoder_attention_heads // 2,
264
- rope_ratio,
265
- )
266
-
267
- def forward(
268
- self,
269
- input_features,
270
- attention_mask=None,
271
- head_mask=None,
272
- output_attentions=None,
273
- output_hidden_states=None,
274
- return_dict=None,
275
- position_ids=None,
276
- ):
277
- r"""
278
- Args:
279
- input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
280
- Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
281
- obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
282
- `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
283
- `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
284
- and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
285
- attention_mask (`torch.Tensor`)`, *optional*):
286
- Whisper does not support masking of the `input_features`, this argument is preserved for compatibility,
287
- but it is not used. By default the silence in the input log mel spectrogram are ignored.
288
- head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
289
- Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
290
-
291
- - 1 indicates the head is **not masked**,
292
- - 0 indicates the head is **masked**.
293
- output_attentions (`bool`, *optional*):
294
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
295
- returned tensors for more detail.
296
- output_hidden_states (`bool`, *optional*):
297
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
298
- for more detail.
299
- return_dict (`bool`, *optional*):
300
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
301
- """
302
- output_attentions = (
303
- output_attentions
304
- if output_attentions is not None
305
- else self.config.output_attentions
306
- )
307
- output_hidden_states = (
308
- output_hidden_states
309
- if output_hidden_states is not None
310
- else self.config.output_hidden_states
311
- )
312
- return_dict = (
313
- return_dict if return_dict is not None else self.config.use_return_dict
314
- )
315
- # use_cache = use_cache if use_cache is not None else self.config.use_cache
316
-
317
- inputs_embeds = nn.functional.gelu(self.conv1(input_features))
318
- inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
319
-
320
- inputs_embeds = inputs_embeds.permute(0, 2, 1)
321
- if self.use_rope:
322
- rotary_embs = self.rotary_embedding.get_emb(
323
- inputs_embeds.shape[1],
324
- inputs_embeds.dtype,
325
- inputs_embeds.device,
326
- )
327
- if position_ids is not None:
328
- rotary_embs = rotary_embs[position_ids]
329
- else:
330
- rotary_embs = rotary_embs[None]
331
- hidden_states = inputs_embeds
332
- else:
333
- rotary_embs = None
334
- if position_ids is not None:
335
- # wrap tail, those are usually paddings to avoid inter-sample conv interfering
336
- max_l = self.embed_positions.weight.shape[0]
337
- if position_ids.max() >= max_l:
338
- print("Pos id max", position_ids.max(), "wrapping")
339
- embed_pos = self.embed_positions.weight[position_ids % max_l]
340
- else:
341
- embed_pos = self.embed_positions.weight[:inputs_embeds.shape[1]]
342
- hidden_states = inputs_embeds + embed_pos
343
- hidden_states = nn.functional.dropout(
344
- hidden_states, p=self.dropout, training=self.training
345
- )
346
-
347
- encoder_states = () if output_hidden_states else None
348
- all_attentions = () if output_attentions else None
349
-
350
- # check if head_mask has a correct number of layers specified if desired
351
- if head_mask is not None:
352
- assert head_mask.size()[0] == (
353
- len(self.layers)
354
- ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
355
-
356
- for idx, encoder_layer in enumerate(self.layers):
357
- if output_hidden_states:
358
- encoder_states = encoder_states + (hidden_states,)
359
- # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
360
- to_drop = False
361
- if self.training:
362
- dropout_probability = torch.rand([])
363
- if dropout_probability < self.layerdrop: # skip the layer
364
- to_drop = True
365
-
366
- if to_drop:
367
- layer_outputs = (None, None)
368
- else:
369
- if self.gradient_checkpointing and self.training:
370
- layer_outputs = self._gradient_checkpointing_func(
371
- encoder_layer.__call__,
372
- hidden_states,
373
- None,
374
- (head_mask[idx] if head_mask is not None else None),
375
- output_attentions,
376
- rotary_embs,
377
- position_ids,
378
- )
379
- else:
380
- layer_outputs = encoder_layer(
381
- hidden_states,
382
- None,
383
- layer_head_mask=(
384
- head_mask[idx] if head_mask is not None else None
385
- ),
386
- output_attentions=output_attentions,
387
- rotary_pos_emb=rotary_embs,
388
- position_ids=position_ids,
389
- )
390
-
391
- hidden_states = layer_outputs[0]
392
-
393
- if output_attentions:
394
- all_attentions = all_attentions + (layer_outputs[2],)
395
-
396
- hidden_states = self.layer_norm(hidden_states)
397
- if output_hidden_states:
398
- encoder_states = encoder_states + (hidden_states,)
399
-
400
- if not return_dict:
401
- return tuple(
402
- v
403
- for v in [hidden_states, encoder_states, all_attentions]
404
- if v is not None
405
- )
406
- return BaseModelOutputWithPastAndCrossAttentions(
407
- last_hidden_state=hidden_states,
408
- hidden_states=encoder_states,
409
- attentions=all_attentions,
410
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling_glmasr.py DELETED
@@ -1,149 +0,0 @@
1
- from typing import Optional
2
-
3
- import torch
4
- from torch import Tensor, nn
5
- from transformers import LlamaForCausalLM
6
- from transformers.modeling_outputs import CausalLMOutputWithPast
7
-
8
- from .configuration_glmasr import GlmasrConfig
9
- from .modeling_audio import WhisperSpecialEncoder
10
-
11
-
12
- class AudioMLPAdapter(nn.Module):
13
- def __init__(self, config: GlmasrConfig):
14
- super().__init__()
15
- whisper_config = config.whisper_config
16
- self.merge_factor = config.merge_factor
17
- self.whisper = WhisperSpecialEncoder(
18
- whisper_config,
19
- use_rope=config.use_rope,
20
- )
21
- self.whisper.layer_norm = nn.Identity()
22
- self.layer_norm = nn.LayerNorm(whisper_config.hidden_size)
23
- act = {
24
- "gelu": nn.GELU(),
25
- "relu": nn.ReLU(),
26
- "selu": nn.SELU(),
27
- }[config.mlp_adapter_act]
28
- hidden = whisper_config.hidden_size * self.merge_factor
29
- output_dim = config.lm_config.hidden_size
30
- self.adapting = nn.Sequential(
31
- nn.Linear(hidden, output_dim * 2),
32
- act,
33
- nn.Linear(output_dim * 2, output_dim),
34
- )
35
- self.audio_bos_eos_token = nn.Embedding(2, output_dim)
36
-
37
- def forward(self, audios: Tensor) -> tuple[Tensor, Tensor, Tensor]:
38
- bsz = audios.size(0)
39
- encoded = self.whisper(audios)[0]
40
- encoded = self.layer_norm(encoded)
41
- encoded = encoded.reshape(bsz, -1, encoded.size(-1) * self.merge_factor)
42
- adapted = self.adapting(encoded)
43
- boa = self.audio_bos_eos_token.weight[0][None, :]
44
- eoa = self.audio_bos_eos_token.weight[1][None, :]
45
- return adapted, boa, eoa
46
-
47
-
48
- class GlmasrModel(LlamaForCausalLM):
49
- config_class = GlmasrConfig
50
-
51
- def __init__(self, config: GlmasrConfig):
52
- super().__init__(config.lm_config)
53
- self.audio_encoder = AudioMLPAdapter(config)
54
- self.all_config = config
55
-
56
- def forward(
57
- self,
58
- input_ids: Optional[torch.LongTensor] = None,
59
- audios: Optional[Tensor] = None,
60
- audio_offsets: Optional[list[list[int]]] = None,
61
- audio_length: Optional[list[list[int]]] = None,
62
- attention_mask: Optional[Tensor] = None,
63
- position_ids: Optional[Tensor] = None,
64
- past_key_values: Optional[tuple] = None,
65
- use_cache: Optional[bool] = None,
66
- **kwargs,
67
- ) -> CausalLMOutputWithPast:
68
- tokens = input_ids
69
- vocab_size = self.config.vocab_size
70
- tokens = torch.clamp(tokens, 0, vocab_size - 1)
71
- language_embs = self.model.embed_tokens(tokens)
72
-
73
- have_audio = audios is not None and (
74
- kwargs.get("past_key_values") is None or len(kwargs["past_key_values"]) == 0
75
- )
76
- if have_audio:
77
- if audio_length is None:
78
- raise ValueError("audio_length is required when audio_offsets are provided")
79
- audio_embs, boa, eoa = self.audio_encoder(audios)
80
- index = 0
81
- for batch, (offsets, lengths) in enumerate(zip(audio_offsets, audio_length)):
82
- for offset, length in zip(offsets, lengths):
83
- language_embs[batch, offset : offset + length] = audio_embs[index, :length]
84
- language_embs[batch, offset - 1] = boa
85
- language_embs[batch, offset + length] = eoa
86
- index += 1
87
-
88
- kwargs.pop("inputs_embeds", None)
89
- kwargs.pop("is_first_forward", None)
90
-
91
- outputs = self.model(
92
- inputs_embeds=language_embs,
93
- attention_mask=attention_mask,
94
- position_ids=position_ids,
95
- past_key_values=past_key_values,
96
- use_cache=use_cache,
97
- **kwargs,
98
- )
99
- logits = self.lm_head(outputs[0])
100
- return CausalLMOutputWithPast(
101
- loss=None,
102
- logits=logits,
103
- past_key_values=outputs.past_key_values,
104
- hidden_states=outputs.hidden_states,
105
- attentions=outputs.attentions,
106
- )
107
-
108
- def _update_model_kwargs_for_generation(self, *args, **kwargs):
109
- model_kwargs = super()._update_model_kwargs_for_generation(*args, **kwargs)
110
- model_kwargs["is_first_forward"] = False
111
- position_ids = model_kwargs.get("position_ids")
112
- if position_ids is not None:
113
- next_pos = position_ids[..., -1:].clone() + 1
114
- model_kwargs["position_ids"] = torch.cat([position_ids, next_pos], dim=-1)
115
- return model_kwargs
116
-
117
- def prepare_inputs_for_generation(
118
- self,
119
- *args,
120
- past_key_values: Optional[tuple] = None,
121
- attention_mask: Optional[Tensor] = None,
122
- position_ids: Optional[Tensor] = None,
123
- use_cache: Optional[bool] = None,
124
- is_first_forward: bool = True,
125
- **kwargs,
126
- ):
127
- prepared = super().prepare_inputs_for_generation(
128
- *args,
129
- past_key_values=past_key_values,
130
- attention_mask=attention_mask,
131
- position_ids=position_ids,
132
- use_cache=use_cache,
133
- is_first_forward=is_first_forward,
134
- **kwargs,
135
- )
136
- for key, value in kwargs.items():
137
- if key not in prepared and key.startswith("audio"):
138
- prepared[key] = value
139
- if is_first_forward and past_key_values is not None and len(past_key_values) > 0:
140
- cached_len = past_key_values[0][0].shape[2]
141
- prepared["input_ids"] = prepared["input_ids"][:, cached_len:]
142
- if "position_ids" in prepared:
143
- prepared["position_ids"] = prepared["position_ids"][:, cached_len:]
144
- if not is_first_forward:
145
- prepared["audios"] = None
146
- return prepared
147
-
148
-
149
- __all__ = ["GlmasrModel"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
processor_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "audio_token": "<|pad|>",
3
+ "default_transcription_prompt": "Please transcribe this audio into text",
4
+ "feature_extractor": {
5
+ "chunk_length": 30,
6
+ "dither": 0.0,
7
+ "feature_extractor_type": "WhisperFeatureExtractor",
8
+ "feature_size": 128,
9
+ "hop_length": 160,
10
+ "n_fft": 400,
11
+ "n_samples": 480000,
12
+ "nb_max_frames": 3000,
13
+ "padding_side": "right",
14
+ "padding_value": 0.0,
15
+ "return_attention_mask": false,
16
+ "sampling_rate": 16000
17
+ },
18
+ "max_audio_len": 600,
19
+ "processor_class": "GlmAsrProcessor"
20
+ }
tokenizer_config.json CHANGED
@@ -1,143 +1,9 @@
1
  {
2
- "added_tokens_decoder": {
3
- "59246": {
4
- "content": "<|endoftext|>",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "59247": {
12
- "content": "[MASK]",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "59248": {
20
- "content": "[gMASK]",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "59249": {
28
- "content": "[sMASK]",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "59250": {
36
- "content": "<sop>",
37
- "lstrip": false,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- },
43
- "59251": {
44
- "content": "<eop>",
45
- "lstrip": false,
46
- "normalized": false,
47
- "rstrip": false,
48
- "single_word": false,
49
- "special": true
50
- },
51
- "59252": {
52
- "content": "<|system|>",
53
- "lstrip": false,
54
- "normalized": false,
55
- "rstrip": false,
56
- "single_word": false,
57
- "special": true
58
- },
59
- "59253": {
60
- "content": "<|user|>",
61
- "lstrip": false,
62
- "normalized": false,
63
- "rstrip": false,
64
- "single_word": false,
65
- "special": true
66
- },
67
- "59254": {
68
- "content": "<|assistant|>",
69
- "lstrip": false,
70
- "normalized": false,
71
- "rstrip": false,
72
- "single_word": false,
73
- "special": true
74
- },
75
- "59255": {
76
- "content": "<|observation|>",
77
- "lstrip": false,
78
- "normalized": false,
79
- "rstrip": false,
80
- "single_word": false,
81
- "special": true
82
- },
83
- "59256": {
84
- "content": "<|begin_of_image|>",
85
- "lstrip": false,
86
- "normalized": false,
87
- "rstrip": false,
88
- "single_word": false,
89
- "special": true
90
- },
91
- "59257": {
92
- "content": "<|end_of_image|>",
93
- "lstrip": false,
94
- "normalized": false,
95
- "rstrip": false,
96
- "single_word": false,
97
- "special": true
98
- },
99
- "59258": {
100
- "content": "<|begin_of_video|>",
101
- "lstrip": false,
102
- "normalized": false,
103
- "rstrip": false,
104
- "single_word": false,
105
- "special": true
106
- },
107
- "59259": {
108
- "content": "<|end_of_video|>",
109
- "lstrip": false,
110
- "normalized": false,
111
- "rstrip": false,
112
- "single_word": false,
113
- "special": true
114
- },
115
- "59260": {
116
- "content": "<|pad|>",
117
- "lstrip": false,
118
- "normalized": false,
119
- "rstrip": false,
120
- "single_word": false,
121
- "special": true
122
- },
123
- "59261": {
124
- "content": "<|begin_of_audio|>",
125
- "lstrip": false,
126
- "normalized": false,
127
- "rstrip": false,
128
- "single_word": false,
129
- "special": true
130
- },
131
- "59262": {
132
- "content": "<|end_of_audio|>",
133
- "lstrip": false,
134
- "normalized": false,
135
- "rstrip": false,
136
- "single_word": false,
137
- "special": true
138
- }
139
- },
140
- "additional_special_tokens": [
141
  "<|endoftext|>",
142
  "[MASK]",
143
  "[gMASK]",
@@ -156,17 +22,16 @@
156
  "<|begin_of_audio|>",
157
  "<|end_of_audio|>"
158
  ],
159
- "clean_up_tokenization_spaces": false,
160
- "do_lower_case": false,
161
- "eos_token": "<|endoftext|>",
162
- "extra_special_tokens": {},
163
  "model_input_names": [
164
  "input_ids",
165
  "attention_mask"
166
  ],
167
  "model_max_length": 65536,
 
168
  "pad_token": "<|endoftext|>",
169
  "padding_side": "left",
 
170
  "remove_space": false,
171
- "tokenizer_class": "PreTrainedTokenizer"
172
  }
 
1
  {
2
+ "backend": "tokenizers",
3
+ "clean_up_tokenization_spaces": false,
4
+ "do_lower_case": false,
5
+ "eos_token": "<|endoftext|>",
6
+ "extra_special_tokens": [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  "<|endoftext|>",
8
  "[MASK]",
9
  "[gMASK]",
 
22
  "<|begin_of_audio|>",
23
  "<|end_of_audio|>"
24
  ],
25
+ "is_local": false,
 
 
 
26
  "model_input_names": [
27
  "input_ids",
28
  "attention_mask"
29
  ],
30
  "model_max_length": 65536,
31
+ "model_specific_special_tokens": {},
32
  "pad_token": "<|endoftext|>",
33
  "padding_side": "left",
34
+ "processor_class": "GlmAsrProcessor",
35
  "remove_space": false,
36
+ "tokenizer_class": "TokenizersBackend"
37
  }