Gemma-3-12B-IT (VeriCoder Dataset Ablation)

This is a fine-tuned version of Gemma-3-12B-IT model trained on VeriCoder dataset.

Model Details

  • Base Model: Gemma-3-12B-IT
  • Training Dataset: VeriCoder dataset (126k samples)
  • Model Architecture: Gemma3ForCausalLM
  • Parameters: ~11.7B
  • Context Length: 131,072 tokens
  • Sliding Window: 1024

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "LLM4Code/VeriCoder_Gemma12b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Example usage
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_length=512)
print(tokenizer.decode(outputs[0]))

Training Details

  • Dataset: VeriCoder dataset ablation (126k samples)
  • Commit: ae17392c

Files

The model includes:

  • Model weights in SafeTensors format (5 shards)
  • Tokenizer files (tokenizer.json, tokenizer.model, tokenizer_config.json)
  • Model configuration (config.json)
  • Generation configuration (generation_config.json)
  • Chat template (chat_template.jinja)
Downloads last month
-
Safetensors
Model size
12B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for LLM4Code/VeriCoder_Gemma12b

Quantizations
1 model