cellate-tapt_freeze_llrd-LR_5e-05

This model is a fine-tuned version of Mardiyyah/biomedbert_model_extended_untrained on the Mardiyyah/TAPT_CeLLaTe1.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 4.5772
  • Accuracy: 0.3645

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3407
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
10.1671 1.0 6 11.0536 0.0
9.6774 2.0 12 9.8340 0.0
8.3497 3.0 18 8.3769 0.0243
7.2855 4.0 24 7.5898 0.0783
6.6249 5.0 30 6.8324 0.1952
5.9913 6.0 36 6.3808 0.2308
5.4972 7.0 42 5.8510 0.2882
5.1208 8.0 48 5.6228 0.3000
4.8437 9.0 54 5.3562 0.3079
4.6239 10.0 60 5.2804 0.3180
4.3851 11.0 66 4.9995 0.3448
4.2757 12.0 72 4.8869 0.3393
4.1145 13.0 78 4.7195 0.3561
4.0779 14.0 84 4.7257 0.3657
3.9075 15.0 90 4.8817 0.3377
3.9322 16.0 96 4.5672 0.3586
4.1301 16.7273 100 4.5212 0.3695

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
13
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Mardiyyah/cellate-tapt_freeze_llrd-LR_5e-05

Finetuned
(5)
this model

Evaluation results