cellate-tapt_freeze_llrd-LR_5e-05
This model is a fine-tuned version of Mardiyyah/biomedbert_model_extended_untrained on the Mardiyyah/TAPT_CeLLaTe1.0 dataset. It achieves the following results on the evaluation set:
- Loss: 4.5772
- Accuracy: 0.3645
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3407
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 10.1671 | 1.0 | 6 | 11.0536 | 0.0 |
| 9.6774 | 2.0 | 12 | 9.8340 | 0.0 |
| 8.3497 | 3.0 | 18 | 8.3769 | 0.0243 |
| 7.2855 | 4.0 | 24 | 7.5898 | 0.0783 |
| 6.6249 | 5.0 | 30 | 6.8324 | 0.1952 |
| 5.9913 | 6.0 | 36 | 6.3808 | 0.2308 |
| 5.4972 | 7.0 | 42 | 5.8510 | 0.2882 |
| 5.1208 | 8.0 | 48 | 5.6228 | 0.3000 |
| 4.8437 | 9.0 | 54 | 5.3562 | 0.3079 |
| 4.6239 | 10.0 | 60 | 5.2804 | 0.3180 |
| 4.3851 | 11.0 | 66 | 4.9995 | 0.3448 |
| 4.2757 | 12.0 | 72 | 4.8869 | 0.3393 |
| 4.1145 | 13.0 | 78 | 4.7195 | 0.3561 |
| 4.0779 | 14.0 | 84 | 4.7257 | 0.3657 |
| 3.9075 | 15.0 | 90 | 4.8817 | 0.3377 |
| 3.9322 | 16.0 | 96 | 4.5672 | 0.3586 |
| 4.1301 | 16.7273 | 100 | 4.5212 | 0.3695 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.21.0
- Downloads last month
- 13