classifier-clinc-MBbase-distilled-optuna
This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7741
- Accuracy: 0.9535
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 6
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| No log | 1.0 | 313 | 3.4520 | 0.8368 |
| 6.0158 | 2.0 | 626 | 1.4572 | 0.9303 |
| 6.0158 | 3.0 | 939 | 1.0490 | 0.9461 |
| 1.1379 | 4.0 | 1252 | 0.8826 | 0.9532 |
| 0.6026 | 5.0 | 1565 | 0.7999 | 0.9535 |
| 0.6026 | 6.0 | 1878 | 0.7741 | 0.9535 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 13
Model tree for Mathildeholst/classifier-clinc-MBbase-distilled-optuna
Base model
answerdotai/ModernBERT-base